中考數(shù)學知識點歸納總結2024
數(shù)學作為主科之一,是非常容易拉分的科目,那么關于中考數(shù)學知識點有哪些呢?一起來看看吧,以下是小編準備的一些中考數(shù)學知識點歸納總結,僅供參考。
中考數(shù)學公式大全
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數(shù)的關系 X1+X2=-b/a X1__X2=c/a 注:韋達定理
判別式
b2-4ac=0注:方程有兩個相等的實根
b2-4ac>0注:方程有兩個不等的實根
b2-4ac0
拋物線標準方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱側面積 S=c__h 斜棱柱側面積 S=c'__h
正棱錐側面積 S=1/2c__h' 正棱臺側面積 S=1/2(c+c')h'
圓臺側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi__r2
圓柱側面積 S=c__h=2pi__h 圓錐側面積 S=1/2__c__l=pi__r__l
弧長公式 l=a__r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2__l__r
錐體體積公式 V=1/3__S__H 圓錐體體積公式 V=1/3__pi__r2h
斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s__h 圓柱體 V=pi__r2h
常見的初中數(shù)學公式
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的余角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大于第三邊
16 推論 三角形兩邊的差小于第三邊
17 三角形內角和定理 三角形三個內角的和等于180°
18 推論1直角三角形的兩個銳角互余
19 推論2三角形的一個外角等于和它不相鄰的兩個內角的和
20 推論3三角形的一個外角大于任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1在角的平分線上的點到這個角的兩邊的距離相等
28 定理2到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3等邊三角形的各角都相等,并且每一個角都等于60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35 推論1三個角都相等的三角形是等邊三角形
36 推論2 有一個角等于60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
38 直角三角形斜邊上的中線等于斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1關于某條直線對稱的兩個圖形是全等形
43 定理2 如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線
44定理3兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那么這個三角形是直角三角形
48定理 四邊形的內角和等于360°
49四邊形的外角和等于360°
50多邊形內角和定理 n邊形的內角的和等于(n-2)×180°
51推論 任意多邊的外角和等于360°
52平行四邊形性質定理1 平行四邊形的對角相等
53平行四邊形性質定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角
61矩形性質定理2 矩形的對角線相等
62矩形判定定理1 有三個角是直角的四邊形是矩形
63矩形判定定理2 對角線相等的平行四邊形是矩形
64菱形性質定理1 菱形的四條邊都相等
65菱形性質定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(a×b)÷2
67菱形判定定理1 四邊都相等的四邊形是菱形
68菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71定理1關于中心對稱的兩個圖形是全等的
72定理2關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分
73逆定理 如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱
74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79 推論1經過梯形一腰的中點與底平行的直線,必平分另一腰
80 推論2經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半
82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性質 如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
84 (2)合比性質 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b
86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊
89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93 判定定理2兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94 判定定理3三邊對應成比例,兩三角形相似(SSS)
95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似
96 性質定理1相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比
97 性質定理2相似三角形周長的比等于相似比
98 性質定理3相似三角形面積的比等于相似比的平方
99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
中考數(shù)學??家族e知識點
一、相似三角形(7個考點)
考點1
相似三角形的概念、相似比的意義、畫圖形的放大和縮小
考核要求
(1)理解相似形的概念;
(2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小。
考點2
平行線分線段成比例定理、三角形一邊的平行線的有關定理
考核要求:理解并利用平行線分線段成比例定理解決一些幾何證明和幾何計算。
注意:被判定平行的一邊不可以作為條件中的對應線段成比例使用。
考點3
相似三角形的概念
考核要求:以相似三角形的概念為基礎,抓住相似三角形的特征,理解相似三角形的定義。
考點4
相似三角形的判定和性質及其應用
考核要求:熟練掌握相似三角形的判定定理(包括預備定理、三個判定定理、直角三角形相似的判定定理)和性質,并能較好地應用。
考點5
三角形的重心
考核要求:知道重心的定義并初步應用。
考點6
向量的有關概念
考點7
向量的加法、減法、實數(shù)與向量相乘、向量的線性運算
考核要求:掌握實數(shù)與向量相乘、向量的線性運算
二、銳角三角比(2個考點)
考點8:
銳角三角比(銳角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。
考點9:
解直角三角形及其應用
考核要求:
(1)理解解直角三角形的意義;
(2)會用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡單的實際問題,尤其應當熟練運用特殊銳角的三角比的值解直角三角形。
三、二次函數(shù)(4個考點)
考點10
函數(shù)以及函數(shù)的定義域、函數(shù)值等有關概念,函數(shù)的表示法,常值函數(shù)
考核要求:
(1)通過實例認識變量、自變量、因變量,知道函數(shù)以及函數(shù)的定義域、函數(shù)值等概念;
(2)知道常值函數(shù);
(3)知道函數(shù)的表示方法,知道符號的意義。
考點11
用待定系數(shù)法求二次函數(shù)的解析式
考核要求:
(1)掌握求函數(shù)解析式的方法;
(2)在求函數(shù)解析式中熟練運用待定系數(shù)法。
注意求函數(shù)解析式的步驟:一設、二代、三列、四還原。
考點12
畫二次函數(shù)的圖像
考核要求:
(1)知道函數(shù)圖像的意義,會在平面直角坐標系中用描點法畫函數(shù)圖像
(2)理解二次函數(shù)的圖像,體會數(shù)形結合思想;
(3)會畫二次函數(shù)的大致圖像。
考點13
二次函數(shù)的圖像及其基本性質
考核要求:
(1)借助圖像的直觀、認識和掌握一次函數(shù)的性質,建立一次函數(shù)、二元一次方程、直線之間的聯(lián)系;
(2)會用配方法求二次函數(shù)的頂點坐標,并說出二次函數(shù)的有關性質。
注意:
(1)解題時要數(shù)形結合;
(2)二次函數(shù)的平移要化成頂點式。
中考數(shù)學問題的解答技巧
一、預習方法
著重預習,學會自學
預習是自學的開始,進入初中以后,你會逐步嘗到自覺尋求知識來解決問題的甜頭,自覺預習,為學習新知識打下基礎。
預習不是走馬觀花式的看書,在預習時應做到:
一粗讀,先粗略瀏覽教材的有關內容,掌握本節(jié)知識的概貌。
二細讀,對重要概念、公式、法則、定理反復閱讀、體會、思考,注意知識的形成過程,對難以理解的概念作出記號,以便帶著疑問去聽課。方法上可采用隨課預習或單元預習。實踐證明,養(yǎng)成良好的預習習慣,能使你變被動學習為主動學習,同時能逐漸培養(yǎng)你的自學能力。
二、聽課方法
專心聽講,樂于思考
課堂45分鐘最為關鍵,要養(yǎng)成一邊聽講、一邊思考的習慣,使自己的心、眼、耳、口、手都參與課堂活動。無論是課前、課內還是課后,還要多問幾個為什么,絕不放過一個疑問。要處理好“聽”、“思”、“記”的關系?!奥牎笔侵苯佑酶泄俳邮苤R。
聽的過程中注意
(1)聽每節(jié)課的學習要求;
(2)聽知識引入及知識形成過程;
(3)聽懂重點、難點剖析(尤其是預習中的疑點);
(4)聽例題解法的思路和數(shù)學思想方法的體現(xiàn);
(5)聽好課后小結。
(6)“思”是指思維。沒有思維,就發(fā)揮不了自主學習的主體能動作用。在思維方法上,應注意多思、深思、反思。
(7)會記筆記
三、作筆記時應注意
不是記得多就是有效的,而且記筆記要掌握記錄時機,影響了聽課可就不如不記了,記什么,什么時候記,是有學問的,記方法,記技巧,記解題思路記疑點,記要求,記注意點,記住課后一定要整理筆記。記小結、記課后思考題。
1、管理好自己的筆記本
作業(yè)本,糾錯本,還有做過的所有練習卷和測試卷,這可是大考復習時最有用的資料。糾錯本上不僅要整理做錯或不會的習題還要整理測驗中出現(xiàn)的技巧性強的、易錯的題目,便于復習時參考。
2、及時糾錯
課堂練習、作業(yè)、檢測,反饋后要及時查閱,分析錯題的原因,是因為審題出問題還是概念模糊亦或是時間緊沒來得及。切忌不要動不動就以粗心放過自己(形成習慣可就麻煩了),如果思路正確而計算出錯,及時訂正,必要時強化相關計算的訓練。
中考數(shù)學注意事項
1.注意單位、設未知數(shù)、答題的完整。求字母系數(shù)時,注意檢驗判別式 (否則要被扣分)。
2.要多讀題目,注意認真分析,到題目中尋找等量關系,獲取信息,不放過任何一個條件(包括括號里的信息),且注意解答完整。
3.如果第一步條件少,無從下手時,應認真審題,畫草圖尋找突破口,才能完成下面幾步。