八年級(jí)下冊(cè)數(shù)學(xué)教案華師大梯形
八年級(jí)下冊(cè)數(shù)學(xué)教案華師大梯形
梯形是八年級(jí)數(shù)學(xué)??嫉囊粋€(gè)知識(shí)點(diǎn),關(guān)于八年級(jí)下冊(cè)數(shù)學(xué)教案怎么做呢?下面學(xué)習(xí)啦小編為你整理了八年級(jí)下冊(cè)數(shù)學(xué)教案華師大梯形,希望對(duì)你有幫助。
八年級(jí)下冊(cè)數(shù)學(xué)教案(梯形)
知識(shí)結(jié)構(gòu)
梯形知識(shí)歸納
1.梯形的定義及其有關(guān)概念
一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形叫做梯形.平行的兩邊叫做梯形的底,其中長(zhǎng)邊叫下底;不平行的兩邊叫腰;兩底間的距離叫梯形的高.一腰垂直于底的梯形叫直角梯形,兩腰相等的梯形叫等腰梯形.
2.梯形的性質(zhì)及其判定
梯形是特殊的四邊形,它具有四邊形所具有的一切性質(zhì),此外它的上下兩底平行.
一組對(duì)邊平行且另一組對(duì)邊不平行的四邊形是梯形,但要判斷另一組對(duì)邊不平行比較困難,一般用一組對(duì)邊平行且不相等的四邊形是梯形來(lái)判斷.
3.等腰梯形的性質(zhì)和判定
性質(zhì):等腰梯形在同一底上的兩個(gè)角相等,兩腰相等,兩底平行,兩對(duì)角錢(qián)相等,是軸對(duì)稱(chēng)圖形,只有一條對(duì)稱(chēng)軸,底的中垂線就是它的對(duì)稱(chēng)軸.
判定:兩腰相等的梯形是等腰梯形;同一底上的兩個(gè)角相等的梯形是等腰梯形;對(duì)角錢(qián)相等的梯形是等腰梯形.
梯形重難點(diǎn)分析
本節(jié)的重點(diǎn)是等腰梯形的性質(zhì)和判定.梯形仍是具有特殊條件的四邊形,它與平行四邊形同屬于特殊的四邊形,它只有一組對(duì)邊平行,而另一組對(duì)邊不平行,但平行四邊形兩組對(duì)邊分別平行.而等腰梯形又是特殊的梯形,它的許多性質(zhì)和判定方法與矩形、菱形、正方形這些特殊的平行四邊形有一定的相似性和可比性.
本節(jié)的難點(diǎn)也是等腰梯形的性質(zhì)和判定.由于等腰梯形又是特殊的梯形,它的許多性質(zhì)和判定方法與矩形、菱形、正方形這些特殊的平行四邊形有一定的相似性和可比性,雖然學(xué)生在小學(xué)時(shí)已經(jīng)接觸過(guò)等腰梯形,在認(rèn)識(shí)和理解上有一定的基礎(chǔ),但還是容易同特殊的平行四邊形混淆,再加上梯形問(wèn)題往往要轉(zhuǎn)化成平行四邊形和三角形來(lái)處理,經(jīng)常需要添加輔助線,學(xué)生難免會(huì)有無(wú)從下手的感覺(jué),往往會(huì)有對(duì)題目一講就明白但自己不會(huì)分析解答的情況發(fā)生,教師在教學(xué)中要加以注意.
梯形的教學(xué)建議
1.關(guān)于梯形的引入
生活中有許多梯形的例子,小學(xué)又接觸過(guò)梯形內(nèi)容,學(xué)生對(duì)梯形并不陌生,梯形的引入可從下面幾個(gè)角度考慮:
①?gòu)纳顚?shí)例引入,如防洪堤壩、飛機(jī)機(jī)翼,別致窗戶、音箱外形等等;
?、趶男W(xué)學(xué)習(xí)過(guò)的舊知識(shí)復(fù)習(xí)引入;
?、蹚陌l(fā)現(xiàn)的角度引入,比如給出一組圖形,告訴學(xué)生這就是梯形,然后尋找這些圖形的共同點(diǎn),根據(jù)共同點(diǎn)對(duì)梯形進(jìn)行定義以及性質(zhì)、判定的研究;
?、芸捎脝?wèn)題式引入,開(kāi)始時(shí)設(shè)計(jì)一系列與梯形概念相關(guān)的問(wèn)題由學(xué)生進(jìn)行思考、研究,然后給出梯形的定義和性質(zhì).
2.關(guān)于梯形的概念
梯形的相關(guān)概念小學(xué)就已經(jīng)接觸過(guò),但并不深入,在研究梯形的概念時(shí)可設(shè)計(jì)如下問(wèn)題加深對(duì)梯形相關(guān)概念的理解:
?、僖唤M對(duì)邊平行的四邊形是不是梯形?
?、谝唤M對(duì)邊平行一組對(duì)邊相等的圖形是不是梯形?
③一組對(duì)邊相等的圖形是不是梯形?
?、芤唤M對(duì)邊相等一組對(duì)邊不相等的圖形是不是梯形?
?、輰?duì)角線相等的圖形是不是梯形?
?、抻袃蓚€(gè)角是直角的梯形是不是直角梯形?
⑦兩個(gè)角相等的梯形是不是等腰梯形?
?、鄬?duì)角線相等的梯形是不是等腰梯形?
一、教學(xué)目標(biāo)
1. 掌握梯形、等腰梯形、直角梯形的有關(guān)概念.
2. 掌握等腰梯形的兩個(gè)性質(zhì):等腰梯形同一底上的兩個(gè)角相等;兩條對(duì)角線相等.
3. 能夠運(yùn)用梯形的有關(guān)概念和性質(zhì)進(jìn)行有關(guān)問(wèn)題的論證和計(jì)算,進(jìn)一步培養(yǎng)學(xué)生的分析能力和計(jì)算能力.
4. 通過(guò)添加輔助線,把梯形的問(wèn)題轉(zhuǎn)化成平行四邊形或三角形問(wèn)題,使學(xué)生體會(huì)圖形變換的方法和轉(zhuǎn)化的思想
二、教法設(shè)計(jì)
小組討論,引導(dǎo)發(fā)現(xiàn)、練習(xí)鞏固
三、重點(diǎn)、難點(diǎn)
1.教學(xué)重點(diǎn):等腰梯形性質(zhì).
2.教學(xué)難點(diǎn):解決梯形問(wèn)題的基本方法(將梯形轉(zhuǎn)化為平行四邊形和三角形及正確運(yùn)用輔助線).
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具準(zhǔn)備
多媒體,小黑板,常用畫(huà)圖工具
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
教師復(fù)習(xí)引入,學(xué)生閱讀課本;學(xué)生在教師引導(dǎo)下探索等腰梯形的性質(zhì),歸納小結(jié)梯形轉(zhuǎn)化的常見(jiàn)的輔助線
七、教學(xué)步驟
【復(fù)習(xí)提問(wèn)】
1.什么樣的四邊形是平行四邊形?平行四邊形有什么性質(zhì)?
2.小學(xué)學(xué)過(guò)的梯形是什么樣的四邊形.
(讓學(xué)生動(dòng)手畫(huà)一個(gè)梯形,并找3名同學(xué)到黑板上來(lái)畫(huà),并指出上、下底和腰,然后由學(xué)生總結(jié)出梯形的概念).
【引入新課】(板書(shū)課題)
梯形同樣是一個(gè)特殊的四邊形,與平行四邊形一樣,它也有它的特殊性,今天我們就重點(diǎn)來(lái)研究這個(gè)問(wèn)題.
1.梯形及梯形的有關(guān)概念
(l)梯形:一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形叫做梯形.
(2)底:平行的一組對(duì)邊叫做梯形的底(通常把較短的底叫上底,較長(zhǎng)的底叫下底).
(3)腰:不平行的一組對(duì)邊叫做梯形的腰.
(4)高:兩底間的距離叫做梯形高.
(5)直角梯形:一腰垂直于底的梯形.
(6)等腰梯形:兩腰相等的梯形.
八年級(jí)下冊(cè)數(shù)學(xué)教案(梯形的中位線)
知識(shí)結(jié)構(gòu)
重難點(diǎn)分析
本節(jié)的重點(diǎn)是中位線定理.三角形中位線定理和梯形中位線定理不但給出了三角形或梯形中線段的位置關(guān)系,而且給出了線段的數(shù)量關(guān)系,為平面幾何中證明線段平行和線段相等提供了新的思路.
本節(jié)的難點(diǎn)是中位線定理的證明.中位線定理的證明教材中采用了同一法,同一法學(xué)生初次接觸,思維上不容易理解,而其他證明方法都需要添加2條或2條以上的輔助線,添加的目的性和必要性,同以前遇到的情況對(duì)比有一定的難度.
教法建議
1.對(duì)于中位線定理的引入和證明可采用發(fā)現(xiàn)法,由學(xué)生自己觀察、猜想、測(cè)量、論證,實(shí)際掌握效果比應(yīng)用講授法應(yīng)好些,教師可根據(jù)學(xué)生情況參考采用
2.對(duì)于定理的證明,有條件的教師可考慮利用多媒體課件來(lái)進(jìn)行演示知識(shí)的形成及證明過(guò)程,效果可能會(huì)更直接更易于理解
教學(xué)設(shè)計(jì)示例
一、教學(xué)目標(biāo)
1.掌握梯形中位線的概念和梯形中位線定理
2.掌握定理“過(guò)梯形一腰中點(diǎn)且平行底的直線平分另一腰”
3.能夠應(yīng)用梯形中位線概念及定理進(jìn)行有關(guān)的論證和計(jì)算,進(jìn)一步提高學(xué)生的計(jì)算能力和分析能力
4.通過(guò)定理證明及一題多解,逐步培養(yǎng)學(xué)生的分析問(wèn)題和解決問(wèn)題的能力
5. 通過(guò)一題多解,培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的興趣
二、教學(xué)設(shè)計(jì)
引導(dǎo)分析、類(lèi)比探索,討論式
三、重點(diǎn)和難點(diǎn)
1.教學(xué)重點(diǎn):梯形中位線性質(zhì)及不規(guī)則的多邊形面積的計(jì)算.
2.教學(xué)難點(diǎn):梯形中位線定理的證明.
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具準(zhǔn)備
投影儀、膠片,常用畫(huà)圖工具
六、教學(xué)步驟
【復(fù)習(xí)提問(wèn)】
1.什么叫三角形的中位線?它與三角形中線有什么區(qū)別?三角形中位線又有什么性質(zhì)(敘述定理).
2.敘述平行線等分線段定理及推論1、推論2(學(xué)生敘述,教師畫(huà)草圖,如圖所示,結(jié)合圖形復(fù)習(xí)).
猜你感興趣:
1.八年級(jí)下冊(cè)數(shù)學(xué)教案北師大
2.華師大八年級(jí)下數(shù)學(xué)教學(xué)總結(jié)
3.八年級(jí)下冊(cè)數(shù)學(xué)教案人教版范文3篇
4.多邊形的內(nèi)角和數(shù)學(xué)教案及反思