特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學習啦 > 學習方法 > 高考真題 > 天津2023高考數(shù)學真題及參考答案

天津2023高考數(shù)學真題及參考答案

時間: 李金0 分享

天津2023高考數(shù)學真題及參考答案_高考數(shù)學

2023年天津高考,分為9門科目。分別是數(shù)學、數(shù)學、外語、物理、歷史、化學、政治、地理,所有科目均使用自主命題,統(tǒng)稱為“高考天津卷”。下面小編為大家?guī)硖旖?023高考數(shù)學真題及參考答案,希望對您有所幫助!

天津2023高考數(shù)學真題及參考答案

天津2023高考數(shù)學真題及參考答案

天津2023高考數(shù)學真題及參考答案

天津2023高考數(shù)學真題及參考答案



高考數(shù)學復習高分技巧

現(xiàn)階段,學生已基本掌握中學數(shù)學知識體系,具備一定解題經驗,對各種數(shù)學基本方法、思想都有一定認識,后期復習,應以深化理解基礎知識,完善知識結構,并加強綜合訓練為主,提高數(shù)學思想,熟練掌握各類數(shù)學方法。

高考數(shù)學第一輪復習:抓基礎要點

1.抓基礎有三個要點

(1)保證綜合訓練題量,限時限量完成套題訓練,在快速、準確、規(guī)范上下功夫。

(2)“抬起頭來做題”,從清晰解題思路、優(yōu)化解題步驟、尋找最佳切入點方面,做好解題的歸納小結。

(3)及時改錯、補漏、拾遺。

2.從能力要求的角度跟進提升

(1)熟練三種數(shù)學語言(數(shù)學文字語言,數(shù)學符號語言,數(shù)學圖形語言)的相互轉換,

(2)強化訓練細致嚴密的審題習慣。

(3)加強訓練快捷靈活的`解題切入。

(4)要在確定合理運算方向,選擇合理運算途徑,優(yōu)化組合公式法則,形成靈活善變的解題策略方面下功夫。

(5)對實際應用、開放探索問題,解選擇題、填空題等策略問題也應適度訓練。

3.做好心理調節(jié)

除數(shù)學能力外,過硬的心理素質也是影響考試成敗的主要因素。學大教育一對一輔導老師指出,考生要找準自己的位置,確立合理的參照目標,始終看到自己的成績和進步,形成積極的心理效應,以提高后期復習效率和應考能力。同時要明確,試卷必有難題,作答時要充滿自信,明確試卷的難易對每個人都公平。

高考數(shù)學解題的技巧

一、 熟悉化策略所謂熟悉化策略。

就是當我們面臨的是一道以前沒有接觸過的陌生題目時,要設法把它化為曾經解過的或比較熟悉的題目,以便充分利用已有的知識、經驗或解題模式,順利地解出原題。

一般說來,對于題目的熟悉程度,取決于對題目自身結構的認識和理解。

從結構上來分析,任何一道解答題,都包含條件和結論(或問題)兩個方面。

因此,要把陌生題轉化為熟悉題,可以在變換題目的條件、結論(或問題)以及它們的聯(lián)系方式上多下功夫。

常用的途徑有:

(一)、充分聯(lián)想回憶基本知識和題型:

按照波利亞的觀點,在解決問題之前,我們應充分聯(lián)想和回憶與原有問題相同或相似的知識點和題型,充分利用相似問題中的方式、方法和結論,從而解決現(xiàn)有的問題。

(二)、全方位、多角度分析題意:

對于同一道數(shù)學題,常??梢圆煌膫让?、不同的角度去認識。

因此,根據自己的'知識和經驗,適時調整分析問題的視角,有助于更好地把握題意,找到自己熟悉的解題方向。

(三)恰當構造輔助元素:

數(shù)學中,同一素材的題目,常??梢杂胁煌谋憩F(xiàn)形式;條件與結論(或問題)之間,也存在著多種聯(lián)系方式。

因此,恰當構造輔助元素,有助于改變題目的形式,溝通條件與結論(或條件與問題)的內在聯(lián)系,把陌生題轉化為熟悉題。

數(shù)學解題中,構造的輔助元素是多種多樣的,常見的有構造圖形(點、線、面、體),構造算法,構造多項式,構造方程(組),構造坐標系,構造數(shù)列,構造行列式,構造等價性命題,構造反例,構造數(shù)學模型等等。

二、簡單化策略

所謂簡單化策略,就是當我們面臨的是一道結構復雜、難以入手的題目時,要設法把轉化為一道或幾道比較簡單、易于解答的新題,以便通過對新題的考察,啟迪解題思路,以簡馭繁,解出原題。

簡單化是熟悉化的補充和發(fā)揮。

一般說來,我們對于簡單問題往往比較熟悉或容易熟悉。

因此,在實際解題時,這兩種策略常常是結合在一起進行的,只是著眼點有所不同而已。

三、解題中,實施簡單化策略的途徑是多方面的,常用的有: 尋求中間環(huán)節(jié),分類考察討論,簡化已知條件,恰當分解結論等。

1、尋求中間環(huán)節(jié),挖掘隱含條件:

在些結構復雜的綜合題,就其生成背景而論,大多是由若干比較簡單的基本題,經過適當組合抽去中間環(huán)節(jié)而構成的。

因此,從題目的因果關系入手,尋求可能的中間環(huán)節(jié)和隱含條件,把原題分解成一組相互聯(lián)系的系列題,是實現(xiàn)復雜問題簡單化的一條重要途徑。

2、分類考察討論:

在些數(shù)學題,解題的復雜性,主要在于它的條件、結論(或問題)包含多種不易識別的可能情形。

對于這類問題,選擇恰當?shù)姆诸悩藴剩言}分解成一組并列的簡單題,有助于實現(xiàn)復雜問題簡單化。

3、簡單化已知條件:

有些數(shù)學題,條件比較抽象、復雜,不太容易入手。

這時,不妨簡化題中某些已知條件,甚至暫時撇開不顧,先考慮一個簡化問題。

這樣簡單化了的問題,對于解答原題,常常能起到穿針引線的作用。

4、恰當分解結論:

有些問題,解題的主要困難,來自結論的抽象概括,難以直接和條件聯(lián)系起來,這時,不妨猜想一下,能否把結論分解為幾個比較簡單的部分,以便各個擊破,解出原題。

高考數(shù)學立體幾何解題方法技巧

一、作圖

作圖是立體幾何學習中的基本功,對培養(yǎng)空間概念也有積極的意義,而且在作圖時還要用到許多空間線面的關系.所以作圖是解決立體幾何問題的第一步,作好圖有利于問題的解決.

例1 已知正方體中,點P、E、F分別是棱AB、BC、的中點(如圖1).作出過點P、E、F三點的正方體的截面.

分析:作圖是學生學習中的一個弱點,作多面體的截面又是作圖中的難點.學生看到這樣的題目不知所云.有的學生連結P、E、F得三角形以為就是所求的截面.其實,作截面就是找兩個平面的交線,找交線只要找到交線上的兩點即可.觀察所給的條件(如圖2),發(fā)現(xiàn)PE就是一條交線.又因為平面ABCD//平面,由面面平行的性質可得,截面和面的交線一定和PE平行.而F是的中點,故取的中點Q,則FQ也是一條交線.再延長FQ和的延長線交于一點M,由公理3,點M在平面和平面的交線上,連PM交于點K,則QK和KP又是兩條交線.同理可以找到FR和RE兩條交線(如圖2).因此,六邊形PERFQK就是所求的截面.

二、讀圖

圖形中往往包含著深刻的意義,對圖形理解的程度影響著我們的正確解題,所以讀懂圖形是解決問題的重要一環(huán).

例2 在棱長為a的正方體中,EF是棱AB上的一條線段,且EF=b<a,若q是上的定點,p在上滑動,則四面體pqef的體積( p="" ).

(A)是變量且有最大值 (B)是變量且有最小值 (C)是變量無最大最小值 (D)是常量

分析:此題的解決需要我們仔細分析圖形的特點.這個圖形有很多不確定因素,線段EF的位置不定,點P在滑動,但在這一系列的變化中是否可以發(fā)現(xiàn)其中的穩(wěn)定因素?求四面體的體積要具備哪些條件?

仔細觀察圖形,應該以哪個面為底面?觀察,我們發(fā)現(xiàn)它的形狀位置是要變化的,但是底邊EF是定值,且P到EF的距離也是定值,故它的面積是定值.再發(fā)現(xiàn)點Q到面PEF的距離也是定值.因此,四面體PQEF的體積是定值.我們沒有一點計算,對圖形的分析幫助我們解決了問題.

三、用圖

在立體幾何的學習中,我們會遇到許多似是而非的結論.要證明它我們一時無法完成,這時我們可考慮通過構造一個特殊的圖形來推翻結論,這樣的圖形就是反例圖形.若我們的心中有這樣的反例圖形,那就可以幫助我們迅速作出判斷.

例3 判斷下面的命題是否正確:底面是正三角形且相鄰兩側面所成的二面角都相等的三棱椎是正三棱錐.

分析:這是一個學生很容易判斷錯誤的問題.大家認為該命題正確,其實是錯誤的,但大家一時舉不出例子來加以說明.問題的關鍵是二面角相等很難處理.我們是否可以考慮用一個正三棱錐通過變形得到?

如圖4,設正三棱錐的側面等腰三角形PAB的頂角是,底角是,作的平分線,交PA于E,連接EC.可以證明是等腰三角形,所以AB=BE.同理EC=AB.那么,△EBC是正三角形,從而就是滿足題設的三棱錐,但不是正三棱錐.

四、造圖

在立體幾何的學習中,我們可以根據題目的特征,精心構造一個相應的特殊幾何模型,將陌生復雜的問題轉化為熟悉簡單的問題.

例4 設a、b、c是兩兩異面的三條直線,已知,且d是a、b的公垂線,如果,那么c與d的位置關系是( ).

(A)相交 (B)平行 (C)異面 (D)異面或平行

分析:判斷空間直線的位置關系,最佳方法是構造恰當?shù)膸缀螆D形,它具有直觀和易于判斷的優(yōu)點.根據本題的特點,可以考慮構造正方體,如圖5,在正方體 中,令AB=a,BC=d,.當c為直線時,c與d平行;當c為直線時,c與d異面,故選D.

五、拼圖

空間基本圖形由點、線、面構成,而一些特殊的圖形也可以通過基本圖形拼接得到.在拼圖的過程中,我們會發(fā)現(xiàn)一些變和不變的東西,從中感悟出這個圖形的特點,找出解決待求解問題的方法.

例5 給出任意的一塊三角形紙片,要求剪拼成一個直三棱柱模型,使它的全面積與給出的三角形的面積相等,請設計一種方案,并加以簡要的說明.

分析:這是高考立體幾何題中的一部分.這個設計新穎的題目,使許多平時做慣了證明、計算題的學生一籌莫展.這是一道動作題,但它不僅是簡單的剪剪拼拼的動作,更重要的是一種心靈的“動作”,思維的“動作”.受題目敘述的影響,大家往往在想如何折起來?參考答案也是給了一種折的方法.那么這種方法究竟從何而來?其實逆向思維是這題的一個很好的切人點.我們思考:展開一個直三棱柱,如何還原成一個三角形?

把一個直三棱柱展開后可得到甲、乙兩部分,甲內部的三角形和乙是全等的,甲的三角形外是寬相等的三個矩形.現(xiàn)在的問題是能否把乙分為三部分,補在甲的三個角上正好成為一個三角形(如圖丙)?因為甲中三角形外是寬相等的矩形,所以三角形的頂點應該在原三角形的三條角平分線上,又由于面積要相等,所以甲中的三角形的頂點應該在原三角形的內心和頂點的連線段的中點上(如圖丁).按這樣的設計,剪開后可以折成一個直三棱柱.

六、變圖

幾何圖形千變萬化,在不斷的變化中展示幾何圖形的魅力,在不斷的變化中培養(yǎng)我們的能力,在有意無意的變化中開闊我們的思路.

例6 已知在三棱錐中,PA=a,AB=AC=2a,,求三棱錐的體積.

分析:此題的解決方法很多,但切割是不錯的選擇.

思路1 設D為AB的中點,依題意有:,,所以有:

此解法實際上是把三棱錐一分為二,三棱錐B-PAD的底面是直角三角形,高就是BD,從而大大簡化了計算.這種分割的方法也是立體幾何解題中的一種重要策略.它化復雜為簡單,化未知為已知.

思路2 從點A出發(fā)的三條棱兩兩夾角為,故可補形為正四面體.

如圖,延長AP至S,使PA=PS,連SB、SC,于是四面體S-ABC為邊長等于2a的正四面體,而且

從上述的六個方面,我們可以看到,在立體幾何的學習中如果我們能正確了解圖形,合理利用圖形,不斷變化圖形,一定可以使我們的學習更上一個臺階.

微信搜索關注公眾號:5068教學資料

溫馨提示:查看完整版及各省份高考試卷真題,可下載全文查看或微信搜索公眾號【5068教學資料】,關注后在對話框回復【高考真題】即可免費獲取。

2157195