高一上冊數(shù)學(xué)指數(shù)與指數(shù)冪的運算教案
高一上冊數(shù)學(xué)指數(shù)與指數(shù)冪的運算教案
政治教案主要是課時計劃和教學(xué)計劃的書面呈現(xiàn)。為了讓大家有進(jìn)一步的了解,下面學(xué)習(xí)啦小編整理了人教版高一上冊數(shù)學(xué)指數(shù)與指數(shù)冪的運算教案以供大家閱讀。
人教版高一上冊數(shù)學(xué)指數(shù)與指數(shù)冪的運算教案
教學(xué)分析
我們在初中的學(xué)習(xí)過程中,已了解了整數(shù)指數(shù)冪的概念和運算性質(zhì).從本節(jié)開始我們將在回顧平方根和立方根的基礎(chǔ)上,類比出正數(shù)的n次方根的定義,從而把指數(shù)推廣到分?jǐn)?shù)指數(shù).進(jìn)而推廣到有理數(shù)指數(shù),再推廣到實數(shù)指數(shù),并將冪的運算性質(zhì)由整數(shù)指數(shù)冪推廣到實數(shù)指數(shù)冪.
教材為了讓學(xué)生在學(xué)習(xí)之外就感受到指數(shù)函數(shù)的實際背景,先給出兩個具體例子:GDP的增長問題和碳14的衰減問題.前一個問題,既讓學(xué)生回顧了初中學(xué)過的整數(shù)指數(shù)冪,也讓學(xué)生感受到其中的函數(shù)模型,并且還有思想教育價值.后一個問題讓學(xué)生體會其中的函數(shù)模型的同時,激發(fā)學(xué)生探究分?jǐn)?shù)指數(shù)冪、無理數(shù)指數(shù)冪的興趣與欲望,為新知識的學(xué)習(xí)作了鋪墊.
本節(jié)安排的內(nèi)容蘊涵了許多重要的數(shù)學(xué)思想方法,如推廣的思想(指數(shù)冪運算律的推廣)、類比的思想、逼近的思想(有理數(shù)指數(shù)冪逼近無理數(shù)指數(shù)冪)、數(shù)形結(jié)合的思想(用指數(shù)函數(shù)的圖象研究指數(shù)函數(shù)的性質(zhì))等,同時,充分關(guān)注與實際問題的結(jié)合,體現(xiàn)數(shù)學(xué)的應(yīng)用價值.
根據(jù)本節(jié)內(nèi)容的特點,教學(xué)中要注意發(fā)揮信息技術(shù)的力量,盡量利用計算器和計算機(jī)創(chuàng)設(shè)教學(xué)情境,為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持.
教學(xué)目標(biāo)
1.通過與初中所學(xué)的知識進(jìn)行類比,理解分?jǐn)?shù)指數(shù)冪的概念,進(jìn)而學(xué)習(xí)指數(shù)冪的性質(zhì).掌握分?jǐn)?shù)指數(shù)冪和根式之間的互化,掌握分?jǐn)?shù)指數(shù)冪的運算性質(zhì).培養(yǎng)學(xué)生觀察分析、抽象類比的能力.
2.掌握根式與分?jǐn)?shù)指數(shù)冪的互化,滲透“轉(zhuǎn)化”的數(shù)學(xué)思想.通過運算訓(xùn)練,養(yǎng)成學(xué)生嚴(yán)謹(jǐn)治學(xué),一絲不茍的學(xué)習(xí)習(xí)慣,讓學(xué)生了解數(shù)學(xué)來自生活,數(shù)學(xué)又服務(wù)于生活的哲理.
3.能熟練地運用有理指數(shù)冪運算性質(zhì)進(jìn)行化簡、求值,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S和科學(xué)正確的計算能力.
4.通過訓(xùn)練及點評,讓學(xué)生更能熟練掌握指數(shù)冪的運算性質(zhì).展示函數(shù)圖象,讓學(xué)生通過觀察,進(jìn)而研究指數(shù)函數(shù)的性質(zhì),讓學(xué)生體驗數(shù)學(xué)的簡潔美和統(tǒng)一美.
重點難點
教學(xué)重點
(1)分?jǐn)?shù)指數(shù)冪和根式概念的理解.
(2)掌握并運用分?jǐn)?shù)指數(shù)冪的運算性質(zhì).
(3)運用有理指數(shù)冪的性質(zhì)進(jìn)行化簡、求值.
教學(xué)難點
(1)分?jǐn)?shù)指數(shù)冪及根式概念的理解.
(2)有理指數(shù)冪性質(zhì)的靈活應(yīng)用.
課時安排:3課時
教學(xué)過程:第1課時
作者:路致芳
導(dǎo)入新課
思路1.同學(xué)們在預(yù)習(xí)的過程中能否知道考古學(xué)家如何判斷生物的發(fā)展與進(jìn)化,又怎樣判斷它們所處的年代?(考古學(xué)家是通過對生物化石的研究來判斷生物的發(fā)展與進(jìn)化的,第二個問題我們不太清楚)考古學(xué)家是按照這樣一條規(guī)律推測生物所處的年代的.教師板書本節(jié)課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運算.
思路2.同學(xué)們,我們在初中學(xué)習(xí)了平方根、立方根,那么有沒有四次方根、五次方根…n次方根呢?答案是肯定的,這就是我們本堂課研究的課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運算.
推進(jìn)新課
新知探究
提出問題
(1)什么是平方根?什么是立方根?一個數(shù)的平方根有幾個,立方根呢?
(2)如x4=a,x5=a,x6=a,根據(jù)上面的結(jié)論我們又能得到什么呢?
(3)根據(jù)上面的結(jié)論我們能得到一般性的結(jié)論嗎?
(4)可否用一個式子表達(dá)呢?
活動:教師提示,引導(dǎo)學(xué)生回憶初中的時候已經(jīng)學(xué)過的平方根、立方根是如何定義的,對照類比平方根、立方根的定義解釋上面的式子,對問題(2)的結(jié)論進(jìn)行引申、推廣,相互交流討論后回答,教師及時啟發(fā)學(xué)生,具體問題一般化,歸納類比出n次方根的概念,評價學(xué)生的思維.
討論結(jié)果:(1)若x2=a,則x叫做a的平方根,正實數(shù)的平方根有兩個,它們互為相反數(shù),如:4的平方根為±2,負(fù)數(shù)沒有平方根,同理,若x3=a,則x叫做a的立方根,一個數(shù)的立方根只有一個,如:-8的立方根為-2.
(2)類比平方根、立方根的定義,一個數(shù)的四次方等于a,則這個數(shù)叫a的四次方根.一個數(shù)的五次方等于a,則這個數(shù)叫a的五次方根.一個數(shù)的六次方等于a,則這個數(shù)叫a的六次方根.
(3)類比(2)得到一個數(shù)的n次方等于a,則這個數(shù)叫a的n次方根.
(4)用一個式子表達(dá)是,若xn=a,則x叫a的n次方根.
教師板書n次方根的意義:
一般地,如果xn=a,那么x叫做a的n次方根(n th root),其中n>1且n∈N*.
可以看出數(shù)的平方根、立方根的概念是n次方根的概念的特例.
提出問題
(1)你能根據(jù)n次方根的意義求出下列數(shù)的n次方根嗎?(多媒體顯示以下題目).
?、?的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根.
(2)平方根,立方根,4次方根,5次方根,7次方根,分別對應(yīng)的方根的指數(shù)是什么數(shù),有什么特點?4,±8,16,-32,32,0,a6分別對應(yīng)什么性質(zhì) 的數(shù),有什么特點?
(3)問題(2)中,既然方根有奇次的也有偶次的,數(shù)a有正有負(fù),還有零,結(jié)論有一個的,也有兩個的,你能否總結(jié)一般規(guī)律呢?
(4)任何一個數(shù)a的偶次方根是否存在呢?
活動:教師提示學(xué)生切實緊扣n次方根的概念,求一個數(shù)a的n次方根,就是求出的那個數(shù)的n次方等于a,及時點撥學(xué)生,從數(shù)的分類考慮,可以把具體的數(shù)寫出來,觀察數(shù)的 特點,對問題(2)中的結(jié)論,類比推廣引申,考慮要全面,對回答正確的學(xué)生及時表揚,對回答不準(zhǔn)確的學(xué)生提示引導(dǎo)考慮問題的思路.
討論結(jié)果:(1)因為±2的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所 以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分別是±2,±2,±2,2,-2,0,a2.
(2)方根的指數(shù)是2,3,4,5,7…特點是有奇數(shù)和偶數(shù).總的來看,這些數(shù)包括正數(shù),負(fù)數(shù)和零.
(3)一個數(shù)a的奇次方根只有一個,一個正數(shù)a的偶次方根有兩個,是互為相反數(shù).0的任何次方根都是0.
(4)任何一個數(shù)a的偶次方根不一定存在,如負(fù)數(shù)的偶次方根就不存在,因為沒有一個數(shù)的偶次方是一個負(fù)數(shù).
類比前面的平方根、立方根,結(jié)合剛才的討論,歸納出一般情形,得到n次方根的性質(zhì):
①當(dāng)n為偶數(shù)時,正數(shù)a的n次方根有兩個,是互為相反數(shù),正的n次方根用na表示,如果是負(fù)數(shù),負(fù)的n次方根用-na表示,正的n次方根與負(fù)的n次方根合并寫成±na(a>0).
②n為奇數(shù)時,正數(shù)的n次方根是一個正數(shù),負(fù)數(shù)的n次方根是一個負(fù)數(shù),這時a的n次方根用符號na表示.
③負(fù)數(shù)沒有偶次方根;0的任何次方根都是零.
上面的文字語言可用下面的式子表示:
a為正數(shù):n為奇數(shù), a的n次方根有一個為na,n為偶數(shù), a的n次方根有兩個為±na.
a為負(fù)數(shù):n為奇數(shù), a的n次方根只有一個為na,n為偶數(shù), a的n次方根不存在.
零的n次方根為零,記為n0=0.
可以看出數(shù)的平方根、立方根的性質(zhì)是n次方根的性質(zhì)的特例.
思考
根據(jù)n次方根的性質(zhì)能否舉例說明上述幾種情況?
活動:教師提示學(xué)生對方根的性質(zhì)要分類掌握,即正數(shù)的奇偶次方根,負(fù)數(shù)的奇次方根,零的任何次方根,這樣才不重不漏,同時巡視學(xué)生,隨機(jī)給出一個數(shù),我們寫出它的平方根,立方根,四次方根等,看是否有意義,注意觀察方根的形式,及時糾正學(xué)生在舉例過程中的問題.
解:答案不唯一,比如,64的立方根是4,16的四次方根為±2,-27的5次方根為5-27,而-27的4次方根不存在等.其中5-27也表示方根,它類似于na的形式,現(xiàn)在我們給式子na一個名稱——根式.
根式的概念:
式子na叫做根式,其中a叫做被開方數(shù),n叫做根指數(shù).
如3-27中,3叫根指數(shù),-27叫被開方數(shù).
思考
nan表示an的n次方根,式子nan=a一定成立嗎?如果不一定成立,那么nan等于什么?
活動:教師讓學(xué)生注意討論n為奇偶數(shù)和a的符號,充分讓學(xué)生多舉實例,分組討論.教師點撥,注意歸納整理.
〔如3(-3)3=3-27=-3,4(-8)4=|-8|=8〕.
解答:根據(jù)n次方根的意義,可得:(na)n=a.
通過探究得到:n為奇數(shù),nan=a.
n為偶數(shù),nan=|a|=a,-a,a≥0,a<0.
因此我們得到n次方根的運算性質(zhì):
?、?na)n=a.先開方,再乘方(同次),結(jié)果為被開方數(shù).
?、趎為奇數(shù),nan=a.先奇次乘方,再開方(同次),結(jié)果為被開方數(shù).
n為偶數(shù),nan=|a|=a,-a,a≥0,a<0.先偶次乘方,再開方(同次),結(jié)果為被開方數(shù)的絕對值.
應(yīng)用示例
思路1
例 求下列各式的值:
(1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b).
活動:求某些式子的值,首先考慮的應(yīng)是什么,明確題目的要求是什么,都用到哪些知識,關(guān)鍵是啥,搞清這些之后,再針對每一個題目仔細(xì)分析.觀察學(xué)生的解題情況,讓學(xué)生展示結(jié)果,抓住學(xué)生在解題過程中出現(xiàn)的問題并對癥下藥.求下列各式的值實際上是求數(shù)的方根,可按方根的運算性質(zhì)來解,首先要搞清楚運算順序,目的是把被開方數(shù)的符號定準(zhǔn),然后看根指數(shù)是奇數(shù)還是偶數(shù),如果是奇數(shù),無需考慮符號,如果是偶數(shù),開方的結(jié)果必須是非負(fù)數(shù).
解:(1)3(-8)3=-8;
(2)(-10)2=10;
(3)4(3-π)4=π-3;
(4)(a-b)2=a-b(a>b).
點評:不注意n的奇偶性對式子nan的值的影響 ,是導(dǎo)致問題出現(xiàn)的一個重要原因,要在理解的基礎(chǔ)上,記準(zhǔn),記熟,會用,活用.
變式訓(xùn)練
求出下列各式的值:
(1)7(-2)7;
(2)3(3a-3)3(a≤1);
(3)4(3a-3)4.
解:(1)7(-2)7=-2,
(2)3(3a-3)3(a≤1)=3a-3,
(3)4(3a-3)4=
點評:本題易錯的是第(3)題,往往忽視a與1大小的討論,造成錯解.
思路2
例1 下列各式中正確的是( )
A.4a4=a
B.6(-2)2=3-2
C.a0=1
D.10(2-1)5=2-1
活動:教師提示,這是一道選擇題,本題考查n次方根的運算性質(zhì),應(yīng)首先考慮根據(jù)方根的意義和運算性質(zhì)來解,既要考慮被開方數(shù),又要考慮根指數(shù),嚴(yán)格按求方根的步驟,體會方根運算的實質(zhì),學(xué)生先思考哪些地方容易出錯,再回答.
解析:(1)4a4=a,考查n次方根的運算性質(zhì),當(dāng)n為偶數(shù)時,應(yīng)先寫nan=|a|,故A項錯.
(2)6(-2)2=3-2,本質(zhì)上與上題相同,是一個正數(shù)的偶次方根,根據(jù)運算順序也應(yīng)如此,結(jié)論為6(-2)2=32,故B項錯.
(3)a0=1是有條件的,即a≠0,故C項也錯.
(4)D項是一個正數(shù)的偶次方根,根據(jù)運算順序也應(yīng)如此,故D項正確.所以答案選D.
答案:D
點評:本題由于考查n次方根的運算性質(zhì)與運算順序,有時極易選錯,選四個答案的情況都會有,因此解題時千萬要細(xì)心.
例2 3+22+3-22=__________.
活動:讓同學(xué)們積極思考,交流討論,本題乍一看內(nèi)容與本節(jié)無關(guān),但仔細(xì)一想,我們學(xué)習(xí)的內(nèi)容是方根,這里是帶有雙重根號的式子,去掉一層根號,根據(jù)方根的運算求出結(jié)果是解題的關(guān)鍵,因此將根號下面的式子化成一個完全平方式就更為關(guān)鍵了,從何處入手?需利用和的平方公式與差的平方公式化為完全平方式.正確分析題意是關(guān)鍵,教師提示,引導(dǎo)學(xué)生解題的思路.
解析:因為3+22=1+22+(2)2=(1+2)2=2+1,
3-22=(2)2-22+1=(2-1)2=2-1,
所以3+22+3-22=22.
答案:22
點評:不難看出3-22與3+22形式上有些特點,即是對稱根式,是A±2B形式的式子,我們總能找到辦法把其化成一個完全平方式.
思考
上面的例2還有別的解法嗎?
活動:教師引導(dǎo),去根號常常利用完全平方公式,有時平方差公式也可,同學(xué)們觀察兩個式子的特點,具有對稱性,再考慮并交流討論,一個是“+”,一個是“-”,去掉一層根號后,相加正好抵消.同時借助平方差,又可去掉根號,因此把兩個式子的和看成一個整體,兩邊平方即可,探討得另一種解法.
另解:利用整體思想,x=3+22+3-22,
兩邊平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.
點評:對雙重二次根式,特別是A±2B形式的式子,我們總能找到辦法將根號下面的式子化成一個完全平方式,問題迎刃而解,另外對A+2B±A-2B的式子,我們可以把它們看成一個整體利用完全平方公式和平方差公式去解.
變式訓(xùn)練
若a2-2a+1=a-1,求a的取值范圍.
解:因為a2-2a+1=a-1,而a2-2a+1=(a-1)2=|a-1|=a-1,
即a-1≥0,
所以a≥1.
點評:利用方根的運算性質(zhì)轉(zhuǎn)化為去絕對值符號,是解題的關(guān)鍵.
知能訓(xùn)練
(教師用多媒體顯示在屏幕上)
1.以下說法正確的是( )
A.正數(shù)的n次方根是一個正數(shù)
B.負(fù)數(shù)的n次方根是一個負(fù)數(shù)
C.0的n次方根是零
D.a的n次方根用na表示(以上n>1且n∈N*)
答案:C
2.化簡下列各式:
(1)664;(2)4(-3)2;(3)4x8;(4)6x6y3;(5)(x-y)2.
答案:(1)2;(2)3;(3)x2;(4)|x|y;(5)|x-y|.
3.計算7+40+7-40=__________.
解析:7+40+7-40
=(5)2+25•2+(2)2+(5)2-25•2+(2)2
=(5+2)2+(5-2)2
=5+2+5-2
=25.
答案:25
下一頁更多有關(guān)“高一上冊數(shù)學(xué)指數(shù)與指數(shù)冪的運算教案”的內(nèi)容