八年級(jí)上冊(cè)數(shù)學(xué)教案人教版全冊(cè)
八年級(jí)上冊(cè)數(shù)學(xué)教案人教版全冊(cè)
數(shù)學(xué)教案是教學(xué)設(shè)計(jì)的文本表現(xiàn)形式,是數(shù)學(xué)教師在整個(gè)教學(xué)過程中用來支撐課堂實(shí)踐的理論基礎(chǔ)。這是學(xué)習(xí)啦小編整理的八年級(jí)上冊(cè)數(shù)學(xué)教案人教版 全冊(cè),希望你能從中得到感悟!
八年級(jí)上冊(cè)數(shù)學(xué)教案人教版 全冊(cè)(一)
12.3.2 等邊三角形(二)
教學(xué)目標(biāo)
1.掌握等邊三角形的性質(zhì)和判定方法. 2.培養(yǎng)分析問題、解決問題的能力.
教學(xué)重點(diǎn):等邊三角形的性質(zhì)和判定方法.
教學(xué)難點(diǎn):等邊三角形性質(zhì)的應(yīng)用
八年級(jí)上冊(cè)數(shù)學(xué)教案人教版 全冊(cè)(二)
教學(xué)過程
I創(chuàng)設(shè)情境,提出問題
回顧上節(jié)課講過的等邊三角形的有關(guān)知識(shí)
1.等邊三角形是軸對(duì)稱圖形,它有三條對(duì)稱軸.
2.等邊三角形每一個(gè)角相等,都等于60°
3.三個(gè)角都相等的三角形是等邊三角形.
4.有一個(gè)角是60°的等腰三角形是等邊三角形.
其中1、2是等邊三角形的性質(zhì);3、4的等邊三角形的判斷方法.
II例題與練習(xí)
1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等邊三角形嗎,為什么?
?、僭谶匒B、AC上分別截取AD=AE.
?、谧?ang;ADE=60°,D、E分別在邊AB、AC上.
?、圻^邊AB上D點(diǎn)作DE∥BC,交邊AC于E點(diǎn).
2. 已知:如右圖,P、Q是△ABC的邊BC上的兩點(diǎn),,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.
分析:由已知顯然可知三角形APQ是等邊三角形,每個(gè)角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質(zhì)即可推得∠PAB=30°.
3. P56頁練習(xí)1、2
III課堂小結(jié):1.等腰三角形和性質(zhì);等腰三角形的條件
V布置作業(yè): 1.P58頁習(xí)題12.3第ll題.
2.已知等邊△ABC,求平面內(nèi)一點(diǎn)P,滿足A,B,C,P四點(diǎn)中的任意三點(diǎn)連線都構(gòu)成等腰三角形.這樣的點(diǎn)有多少個(gè)?
八年級(jí)上冊(cè)數(shù)學(xué)教案人教版 全冊(cè)(三)
12.3.2 等邊三角形(三)
教學(xué)過程
一、 復(fù)習(xí)等腰三角形的判定與性質(zhì)
二、 新授:
1.等邊三角形的性質(zhì):三邊相等;三角都是60°;三邊上的中線、高、角平分線相等
2.等邊三角形的判定:
三個(gè)角都相等的三角形是等邊三角形;有一個(gè)角是60°的等腰三角形是等邊三角形;
在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半
注意:推論1是判定一個(gè)三角形為等邊三角形的一個(gè)重要方法.推論2說明在等腰三角形中,只要有一個(gè)角是600,不論這個(gè)角是頂角還是底角,就可以判定這個(gè)三角形是等邊三角形。推論3反映的是直角三角形中邊與角之間的關(guān)系.
3.由學(xué)生解答課本148頁的例子;
4.補(bǔ)充:已知如圖所示, 在△ABC中, BD是AC邊上的中線, DB⊥BC于B,
∠ABC=120o, 求證: AB=2BC
分析 由已知條件可得∠ABD=30o, 如能構(gòu)造有一個(gè)銳角是30o的直角三角形, 斜邊是AB,30o角所對(duì)的邊是與BC相等的線段,問題就得到解決了
八年級(jí)上冊(cè)數(shù)學(xué)教案人教版 全冊(cè)相關(guān)文章:
2.初中八年級(jí)上冊(cè)數(shù)學(xué)教案
3.八年級(jí)數(shù)學(xué)上冊(cè)優(yōu)秀教案范文3篇