高二數(shù)學(xué)三角函數(shù)公式總結(jié)
高二數(shù)學(xué)三角函數(shù)公式總結(jié)
三角函數(shù)內(nèi)容在高二數(shù)學(xué)課程中占有重要的地位,下面是學(xué)習(xí)啦小編給大家?guī)淼母叨?shù)學(xué)三角函數(shù)公式總結(jié),希望對(duì)你有幫助。
高二數(shù)學(xué)三角函數(shù)公式
銳角三角函數(shù)定義:銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。
正弦(sin)等于對(duì)邊比斜邊;sinA=a/c
余弦(cos)等于鄰邊比斜邊;cosA=b/c
正切(tan)等于對(duì)邊比鄰邊;tanA=a/b
余切(cot)等于鄰邊比對(duì)邊;cotA=b/a
正割(sec)等于斜邊比鄰邊;secA=c/b
余割(csc)等于斜邊比對(duì)邊。cscA=c/a
互余角的三角函數(shù)間的關(guān)系
sin(90°-α)=cosα, cos(90°-α)=sinα,
tan(90°-α)=cotα, cot(90°-α)=tanα.
平方關(guān)系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
積的關(guān)系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒數(shù)關(guān)系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
銳角三角函數(shù)公式
兩角和與差的三角函數(shù):
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB ?
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
三角和的三角函數(shù):
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
輔助角公式:
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
降冪公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
萬能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
積化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
推導(dǎo)公式:
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
其他:
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
函數(shù)名 正弦 余弦 正切 余切 正割 余割
在平面直角坐標(biāo)系xOy中,從點(diǎn)O引出一條射線OP,設(shè)旋轉(zhuǎn)角為θ,設(shè)OP=r,P點(diǎn)的坐標(biāo)為(x,y)有
正弦函數(shù) sinθ=y/r
余弦函數(shù) cosθ=x/r
正切函數(shù) tanθ=y/x
余切函數(shù) cotθ=x/y
正割函數(shù) secθ=r/x
余割函數(shù) cscθ=r/y
正弦(sin):角α的對(duì)邊比上斜邊
余弦(cos):角α的鄰邊比上斜邊
正切(tan):角α的對(duì)邊比上鄰邊
余切(cot):角α的鄰邊比上對(duì)邊
正割(sec):角α的斜邊比上鄰邊
余割(csc):角α的斜邊比上對(duì)邊
三角函數(shù)萬能公式
萬能公式
(1)(sinα)^2+(cosα)^2=1
(2)1+(tanα)^2=(secα)^2
(3)1+(cotα)^2=(cscα)^2
證明下面兩式,只需將一式,左右同除(sinα)^2,第二個(gè)除(cosα)^2即可
(4)對(duì)于任意非直角三角形,總有
tanA+tanB+tanC=tanAtanBtanC
證:
A+B=π-C
tan(A+B)=tan(π-C)
(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
得證
同樣可以得證,當(dāng)x+y+z=nπ(n∈Z)時(shí),該關(guān)系式也成立
由tanA+tanB+tanC=tanAtanBtanC可得出以下結(jié)論
(5)cotAcotB+cotAcotC+cotBcotC=1
(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC
(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC
萬能公式為:
設(shè)tan(A/2)=t
sinA=2t/(1+t^2) (A≠2kπ+π,k∈Z)
tanA=2t/(1-t^2) (A≠2kπ+π,k∈Z)
cosA=(1-t^2)/(1+t^2) (A≠2kπ+π,且A≠kπ+(π/2) k∈Z)
就是說sinA.tanA.cosA都可以用tan(A/2)來表示,當(dāng)要求一串函數(shù)式最值的時(shí)候,就可以用萬能公式,推導(dǎo)成只含有一個(gè)變量的函數(shù),最值就很好求了.
三角函數(shù)關(guān)系
倒數(shù)關(guān)系
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的關(guān)系
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscαcα
平方關(guān)系
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函數(shù)關(guān)系六角形記憶法
構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。
倒數(shù)關(guān)系
對(duì)角線上兩個(gè)函數(shù)互為倒數(shù);
商數(shù)關(guān)系
六邊形任意一頂點(diǎn)上的函數(shù)值等于與它相鄰的兩個(gè)頂點(diǎn)上函數(shù)值的乘積。(主要是兩條虛線兩端的三角函數(shù)值的乘積,下面4個(gè)也存在這種關(guān)系。)。由此,可得商數(shù)關(guān)系式。
平方關(guān)系
在帶有陰影線的三角形中,上面兩個(gè)頂點(diǎn)上的三角函數(shù)值的平方和等于下面頂點(diǎn)上的三角函數(shù)值的平方。
兩角和差公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)
二倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan2α=2tanα/(1-tan^2(α)
高二數(shù)學(xué)學(xué)習(xí)方法
做題之后加強(qiáng)反思,做到知識(shí)成片,問題成串。日久天長,構(gòu)建起一個(gè)內(nèi)容與方法的科學(xué)的網(wǎng)絡(luò)系統(tǒng)。俗話說:“有錢難買回頭看”。一般說做的題太少,很多熟能生巧的問題就會(huì)無從談起。因此,應(yīng)該適當(dāng)?shù)囟嘧鲱}。但是,只顧鉆入題海,堆積題目,在考試中一般也是難有作為的。所以要把自己學(xué)到的知識(shí)合理地系統(tǒng)地組織起來,要總結(jié)反思,這樣高中數(shù)學(xué)水平才能長進(jìn)。
積累高中數(shù)學(xué)資料隨時(shí)整理,要注意積累復(fù)習(xí)資料。把課堂筆記,練習(xí),區(qū)單元測驗(yàn),各種試卷,都分門別類按時(shí)間順序整理好。每讀一次,就在上面標(biāo)記出自己下次閱讀時(shí)的重點(diǎn)內(nèi)容。這樣,數(shù)學(xué)復(fù)習(xí)資料才能越讀越精,一目了然。
配合老師主動(dòng)學(xué)習(xí),高一新生的學(xué)習(xí)主動(dòng)性太差是一個(gè)普遍存在的問題。小學(xué)生,常常是完成了作業(yè)就可以盡情地歡樂。初中生基本上也是如此,聽話的孩子就能學(xué)習(xí)好。高中則不然,作業(yè)雖多,但是只知做作業(yè)是絕對(duì)不夠;老師的話也不少,但是誰該干些什么了,老師并不一 一具體指明。因此,高中新生必須提高自己學(xué)習(xí)數(shù)學(xué)的主動(dòng)性。準(zhǔn)備向?qū)淼拇髮W(xué)生的學(xué)習(xí)方法過渡。
合理規(guī)劃步步為營,高中的學(xué)習(xí)是非常緊張的。每個(gè)學(xué)生都要投入自己的幾乎全部的精力。要想能迅速進(jìn)步,就要給自己制定一個(gè)較長遠(yuǎn)的切實(shí)可行的數(shù)學(xué)學(xué)習(xí)目標(biāo)和計(jì)劃,例如第一學(xué)期的期末,自己計(jì)劃達(dá)到班級(jí)的平均分?jǐn)?shù),第一學(xué)年,達(dá)到年級(jí)的前三分之一,如此等等。此外,還要給自己制定學(xué)習(xí)計(jì)劃,詳細(xì)地安排好自己的零星時(shí)間,并及時(shí)作出合理的微量調(diào)整。
看了“高二數(shù)學(xué)三角函數(shù)公式總結(jié)”的人還看了:
1.高二數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié)
2.高中數(shù)學(xué)公式總結(jié):三角函數(shù)公式大全
4.高二下冊數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié)
5.高二數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)