高中數(shù)學(xué)必修二空間幾何體的三視圖和直觀圖知識(shí)點(diǎn)
高中數(shù)學(xué)是很多學(xué)生頭疼的科目,要學(xué)好數(shù)學(xué)就必修會(huì)歸納整理知識(shí)要點(diǎn),下面是學(xué)習(xí)啦小編給大家?guī)?lái)的高中數(shù)學(xué)必修二空間幾何體的三視圖和直觀圖知識(shí)點(diǎn),希望對(duì)你有幫助。
高中數(shù)學(xué)空間幾何體的三視圖和直觀圖知識(shí)點(diǎn)
1.多面體的結(jié)構(gòu)特征
(1)棱柱有兩個(gè)面相互平行,其余各面都是平行四邊形,每相鄰兩個(gè)四邊形的公共邊平行。
正棱柱:側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多邊形,側(cè)棱垂直于底面,側(cè)面是矩形.
(2)棱錐的底面是任意多邊形,側(cè)面是有一個(gè)公共頂點(diǎn)的三角形.
正棱錐:底面是正多邊形,頂點(diǎn)在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐.特別地,各棱均相等的正三棱錐叫正四面體.反過(guò)來(lái),正棱錐的底面是正多邊形,且頂點(diǎn)在底面的射影是底面正多邊形的中心.
(3)棱臺(tái)可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形.
2.旋轉(zhuǎn)體的結(jié)構(gòu)特征
(1)圓柱可以由矩形繞一邊所在直線(xiàn)旋轉(zhuǎn)一周得到.
(2)圓錐可以由直角三角形繞一條直角邊所在直線(xiàn)旋轉(zhuǎn)一周得到.
(3)圓臺(tái)可以由直角梯形繞直角腰所在直線(xiàn)旋轉(zhuǎn)一周或等腰梯形繞上下底面中心所在直線(xiàn)旋轉(zhuǎn)半周得到,也可由平行于底面的平面截圓錐得到.
(4)球可以由半圓面繞直徑旋轉(zhuǎn)一周或圓面繞直徑旋轉(zhuǎn)半周得到.
3.空間幾何體的三視圖
空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側(cè)視圖、俯視圖.
三視圖的長(zhǎng)度特征:“長(zhǎng)對(duì)正,寬相等,高平齊”,即正視圖和側(cè)視圖一樣高,正視圖和俯視圖一樣長(zhǎng),側(cè)視圖和俯視圖一樣寬.若相鄰兩物體的表面相交,表面的交線(xiàn)是它們的分界線(xiàn),在三視圖中,要注意實(shí)、虛線(xiàn)的畫(huà)法.
4.空間幾何體的直觀圖
空間幾何體的直觀圖常用斜二測(cè)畫(huà)法來(lái)畫(huà),基本步驟是:
(1)畫(huà)幾何體的底面
在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點(diǎn)O,畫(huà)直觀圖時(shí),把它們畫(huà)成對(duì)應(yīng)的x′軸、y′軸,兩軸相交于點(diǎn)O′,且使∠x′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線(xiàn)段,在直觀圖中平行于x′軸、y′軸.已知圖形中平行于x軸的線(xiàn)段,在直觀圖中長(zhǎng)度不變,平行于y軸的線(xiàn)段,長(zhǎng)度變?yōu)樵瓉?lái)的一半.
(2)畫(huà)幾何體的高
在已知圖形中過(guò)O點(diǎn)作z軸垂直于xOy平面,在直觀圖中對(duì)應(yīng)的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線(xiàn)段,在直觀圖中仍平行于z′軸且長(zhǎng)度不變.
高中數(shù)學(xué)必修二空間幾何體的三視圖和直觀圖知識(shí)點(diǎn)相關(guān)文章: