特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高二學(xué)習(xí)方法>高二數(shù)學(xué)>

高二數(shù)學(xué)知識點小總結(jié)2020

時間: 維維0 分享

要成為德、智、體兼優(yōu)的勞動者,鍛煉身體極為重要。身體健康是求學(xué)和將來工作之本。運動能治百病,能使人身體健康,頭腦敏捷,對學(xué)習(xí)有促進(jìn)作用。下面給大家分享一些關(guān)于高二數(shù)學(xué)知識點總結(jié)2020,希望對大家有所幫助。

高二數(shù)學(xué)知識點總結(jié)1

一、直線與圓:

1、直線的傾斜角的范圍是

在平面直角坐標(biāo)系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向轉(zhuǎn)到和直線重合時所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當(dāng)直線與軸重合或平行時,規(guī)定傾斜角為0;

2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.

過兩點(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導(dǎo)的方法。

3、直線方程:⑴點斜式:直線過點斜率為,則直線方程為,

⑵斜截式:直線在軸上的截距為和斜率,則直線方程為

4、直線與直線的位置關(guān)系:

(1)平行A1/A2=B1/B2注意檢驗(2)垂直A1A2+B1B2=0

5、點到直線的距離公式;

兩條平行線與的距離是

6、圓的標(biāo)準(zhǔn)方程:.⑵圓的一般方程:

注意能將標(biāo)準(zhǔn)方程化為一般方程

7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.

8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長問題.①相離②相切③相交

9、解決直線與圓的關(guān)系問題時,要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長

二、圓錐曲線方程:

1、橢圓:①方程(a>b>0)注意還有一個;②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;

2、雙曲線:①方程(a,b>0)注意還有一個;②定義:||PF1|-|PF2||=2a<2c;③e=;④實軸長為2a,虛軸長為2b,焦距為2c;漸進(jìn)線或c2=a2+b2

3、拋物線:①方程y2=2px注意還有三個,能區(qū)別開口方向;②定義:|PF|=d焦點F(,0),準(zhǔn)線x=-;③焦半徑;焦點弦=x1+x2+p;

4、直線被圓錐曲線截得的弦長公式:

三、直線、平面、簡單幾何體:

1、學(xué)會三視圖的分析:

2、斜二測畫法應(yīng)注意的地方:

(1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應(yīng)軸o'x'、o'y'、使∠x'o'y'=45°(或135°);

(2)平行于x軸的線段長不變,平行于y軸的線段長減半.

(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

3、表(側(cè))面積與體積公式:

⑴柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h

⑵錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:

⑶臺體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=

⑷球體:①表面積:S=;②體積:V=

4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫

(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

(2)平面與平面平行:①線面平行面面平行。

(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線

5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

⑴異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;

⑵直線與平面所成的角:直線與射影所成的角

四、導(dǎo)數(shù):導(dǎo)數(shù)的意義-導(dǎo)數(shù)公式-導(dǎo)數(shù)應(yīng)用(極值最值問題、曲線切線問題)

1、導(dǎo)數(shù)的定義:在點處的導(dǎo)數(shù)記作.

2.導(dǎo)數(shù)的幾何物理意義:曲線在點處切線的斜率

①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。

3.常見函數(shù)的導(dǎo)數(shù)公式:①;②;③;

⑤;⑥;⑦;⑧。

4.導(dǎo)數(shù)的四則運算法則:

5.導(dǎo)數(shù)的應(yīng)用:

(1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);

注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。

(2)求極值的步驟:

①求導(dǎo)數(shù);

②求方程的根;

③列表:檢驗在方程根的左右的符號,如果左正右負(fù),那么函數(shù)在這個根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個根處取得極小值;

(3)求可導(dǎo)函數(shù)值與最小值的步驟:

ⅰ求的根;ⅱ把根與區(qū)間端點函數(shù)值比較,的為值,最小的是最小值。

五、常用邏輯用語:

1、四種命題:

⑴原命題:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p

注:1、原命題與逆否命題等價;逆命題與否命題等價。判斷命題真假時注意轉(zhuǎn)化。

2、注意命題的否定與否命題的區(qū)別:命題否定形式是;否命題是.命題“或”的否定是“且”;“且”的否定是“或”.

3、邏輯聯(lián)結(jié)詞:

⑴且(and):命題形式pq;pqpqpqp

⑵或(or):命題形式pq;真真真真假

⑶非(not):命題形式p.真假假真假

假真假真真

假假假假真

“或命題”的真假特點是“一真即真,要假全假”;

“且命題”的真假特點是“一假即假,要真全真”;

“非命題”的真假特點是“一真一假”

4、充要條件

由條件可推出結(jié)論,條件是結(jié)論成立的充分條件;由結(jié)論可推出條件,則條件是結(jié)論成立的必要條件。

5、全稱命題與特稱命題:

短語“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,并用符號表示。含有全體量詞的命題,叫做全稱命題。

短語“有一個”或“有些”或“至少有一個”在陳述中表示所述事物的個體或部分,邏輯中通常叫做存在量詞,并用符號表示,含有存在量詞的命題,叫做存在性命題。

高二數(shù)學(xué)知識點總結(jié)2

1.不等式證明的依據(jù)

(2)不等式的性質(zhì)(略)

(3)重要不等式:①|(zhì)a|≥0;a2≥0;(a-b)2≥0(a、b∈R)

②a2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時取“=”號)

2.不等式的證明方法

(1)比較法:要證明a>b(a0(a-b<0),這種證明不等式的方法叫做比較法.

用比較法證明不等式的步驟是:作差——變形——判斷符號.

(2)綜合法:從已知條件出發(fā),依據(jù)不等式的性質(zhì)和已證明過的不等式,推導(dǎo)出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.

(3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時,從而斷定原不等式成立,這種證明不等式的方法叫做分析法.

證明不等式除以上三種基本方法外,還有反證法、數(shù)學(xué)歸納法等.

高二數(shù)學(xué)知識點總結(jié)3

異面直線定義:不同在任何一個平面內(nèi)的兩條直線

異面直線性質(zhì):既不平行,又不相交.

異面直線判定:過平面外一點與平面內(nèi)一點的直線與平面內(nèi)不過該店的直線是異面直線

異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直.

求異面直線所成角步驟:

A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上.B、證明作出的角即為所求角C、利用三角形來求角

(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補(bǔ).

(8)空間直線與平面之間的位置關(guān)系

直線在平面內(nèi)——有無數(shù)個公共點.

三種位置關(guān)系的符號表示:aαa∩α=Aaα

(9)平面與平面之間的位置關(guān)系:平行——沒有公共點;αβ

相交——有一條公共直線.α∩β=b

2、空間中的平行問題

(1)直線與平面平行的判定及其性質(zhì)

線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行.

線線平行線面平行

線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,

那么這條直線和交線平行.線面平行線線平行

(2)平面與平面平行的判定及其性質(zhì)

兩個平面平行的判定定理

(1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行

(線面平行→面面平行),

(2)如果在兩個平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個平面平行.

(線線平行→面面平行),

(3)垂直于同一條直線的兩個平面平行,

兩個平面平行的性質(zhì)定理

(1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行.(面面平行→線面平行)

(2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行.(面面平行→線線平行)

3、空間中的垂直問題

(1)線線、面面、線面垂直的定義

兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直.

線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直.

平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直.

(2)垂直關(guān)系的判定和性質(zhì)定理

線面垂直判定定理和性質(zhì)定理

判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面.

性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行.

面面垂直的判定定理和性質(zhì)定理

判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直.

性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面.

4、空間角問題

(1)直線與直線所成的角

兩平行直線所成的角:規(guī)定為.

兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角.

兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角.

(2)直線和平面所成的角

平面的平行線與平面所成的角:規(guī)定為.平面的垂線與平面所成的角:規(guī)定為.

平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個平面所成的角.

求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”.

在“作角”時依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點到面的垂線,

在解題時,注意挖掘題設(shè)中主要信息:

(1)斜線上一點到面的垂線;

(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線.

(3)二面角和二面角的平面角

二面角的定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面.

二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角.

直二面角:平面角是直角的二面角叫直二面角.

兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角

求二面角的方法

定義法:在棱上選擇有關(guān)點,過這個點分別在兩個面內(nèi)作垂直于棱的射線得到平面角

垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

高二數(shù)學(xué)知識點總結(jié)2020相關(guān)文章

2020高二數(shù)學(xué)知識點總結(jié)

2020高二數(shù)學(xué)老師的工作計劃

2020高二下學(xué)期數(shù)學(xué)教師工作總結(jié)參考

2020高二新學(xué)期數(shù)學(xué)老師的工作計劃

2020高二數(shù)學(xué)教案精選

2020高二數(shù)學(xué)教學(xué)工作計劃

高三文科數(shù)學(xué)2020重要知識點歸納

2020高二數(shù)學(xué)題合集

2020高二數(shù)學(xué)教學(xué)工作總結(jié)范文

2020高二數(shù)學(xué)教師上學(xué)期工作總結(jié)精選

高二數(shù)學(xué)知識點小總結(jié)2020

要成為德、智、體兼優(yōu)的勞動者,鍛煉身體極為重要。身體健康是求學(xué)和將來工作之本。運動能治百病,能使人身體健康,頭腦敏捷,對學(xué)習(xí)有促進(jìn)作用。下面給大家分享一些關(guān)于高二數(shù)學(xué)知識點總結(jié)2020,希望對大家有所幫助。高二數(shù)學(xué)知識點總結(jié)1一、直線與圓:1、直線的傾斜角的范圍是在平面直角坐標(biāo)系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向轉(zhuǎn)到和直線重合時所轉(zhuǎn)的最
推薦度:
點擊下載文檔文檔為doc格式

精選文章

  • 高二數(shù)學(xué)知識點歸納小結(jié)
    高二數(shù)學(xué)知識點歸納小結(jié)

    只有高效的學(xué)習(xí)方法,才可以很快的掌握知識的重難點。有效的讀書方式根據(jù)規(guī)律掌握方法,不要一來就死記硬背,先找規(guī)律,再記憶,然后再學(xué)習(xí),就能

  • 高二數(shù)學(xué)知識點及公式2020
    高二數(shù)學(xué)知識點及公式2020

    數(shù)學(xué)是人類知識活動留下來最具威力的知識工具,是一些現(xiàn)象的根源。數(shù)學(xué)是不變的,是客觀存在的,上帝必以數(shù)學(xué)法則建造宇宙,下面給大家分享一些關(guān)

  • 高二數(shù)學(xué)知識點總結(jié)人教版
    高二數(shù)學(xué)知識點總結(jié)人教版

    因為高二開始努力,所以前面的知識肯定有一定的欠缺,這就要求自己要制定一定的計劃,更要比別人付出更多的努力,相信付出的汗水不會白白流淌的,

  • 高二數(shù)學(xué)知識點總結(jié)詳細(xì)
    高二數(shù)學(xué)知識點總結(jié)詳細(xì)

    只有高效的學(xué)習(xí)方法,才可以很快的掌握知識的重難點。有效的讀書方式根據(jù)規(guī)律掌握方法,不要一來就死記硬背,先找規(guī)律,再記憶,然后再學(xué)習(xí),就能

650304