高一數(shù)學(xué)題集合知識點(diǎn)必修一
當(dāng)一個小小的心念變成成為行為時,便能成了習(xí)慣;從而形成性格,而性格就決定你一生的成敗。成功與不成功之間有時距離很短——只要后者再向前幾步。小編高一頻道為莘莘學(xué)子整理了《高一年級數(shù)學(xué)《集合》知識點(diǎn)總結(jié)》,希望對你有所幫助!
高一數(shù)學(xué)題集合知識點(diǎn)必修一
一.知識歸納:
1.集合的有關(guān)概念。
1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素
注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點(diǎn)與直線的概念類似。
②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示方法:常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數(shù)集:N,Z,Q,R,N
2.子集、交集、并集、補(bǔ)集、空集、全集等概念。
1)子集:若對x∈A都有x∈B,則AB(或AB);
2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)
3)交集:A∩B={∈A且x∈B}
4)并集:A∪B={∈A或x∈B}
5)補(bǔ)集:CUA={A但x∈U}
注意:①?A,若A≠?,則?A;
②若,,則;
③若且,則A=B(等集)
3.弄清集合與元素、集合與集合的關(guān)系,掌握有關(guān)的術(shù)語和符號,特別要注意以下的符號:(1)與、?的區(qū)別;(2)與的區(qū)別;(3)與的區(qū)別。
4.有關(guān)子集的幾個等價關(guān)系
①A∩B=AAB;②A∪B=BAB;③ABCuACuB;
④A∩CuB=空集CuAB;⑤CuA∪B=IAB。
5.交、并集運(yùn)算的性質(zhì)
①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;
③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;
6.有限子集的個數(shù):設(shè)集合A的元素個數(shù)是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。
二.例題講解:
【例1】已知集合M={=m+,m∈Z},N={=,n∈Z},P={=,p∈Z},則M,N,P滿足關(guān)系
A)M=NPB)MN=PC)MNPD)NPM
分析一:從判斷元素的共性與區(qū)別入手。
解答一:對于集合M:{=,m∈Z};對于集合N:{=,n∈Z}
對于集合P:{=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以MN=P,故選B。
分析二:簡單列舉集合中的元素。
解答二:M={…,,…},N={…,,,,…},P={…,,,…},這時不要急于判斷三個集合間的關(guān)系,應(yīng)分析各集合中不同的元素。
=∈N,∈N,∴MN,又=M,∴MN,
=P,∴NP又∈N,∴PN,故P=N,所以選B。
點(diǎn)評:由于思路二只是停留在最初的歸納假設(shè),沒有從理論上解決問題,因此提倡思路一,但思路二易人手。
變式:設(shè)集合,,則(B)
A.M=NB.MNC.NMD.
解:
當(dāng)時,2k+1是奇數(shù),k+2是整數(shù),選B
【例2】定義集合AB={∈A且xB},若A={1,3,5,7},B={2,3,5},則AB的子集個數(shù)為
A)1B)2C)3D)4
分析:確定集合AB子集的個數(shù),首先要確定元素的個數(shù),然后再利用公式:集合A={a1,a2,…,an}有子集2n個來求解。
解答:∵AB={∈A且xB},∴AB={1,7},有兩個元素,故AB的子集共有22個。選D。
變式1:已知非空集合M{1,2,3,4,5},且若a∈M,則6?a∈M,那么集合M的個數(shù)為
A)5個B)6個C)7個D)8個
變式2:已知{a,b}A{a,b,c,d,e},求集合A.
解:由已知,集合中必須含有元素a,b.
集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.
評析本題集合A的個數(shù)實(shí)為集合{c,d,e}的真子集的個數(shù),所以共有個.
【例3】已知集合A={2+px+q=0},B={2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求實(shí)數(shù)p,q,r的值。
解答:∵A∩B={1}∴1∈B∴12?4×1+r=0,r=3.
∴B={2?4x+r=0}={1,3},∵A∪B={?2,1,3},?2B,∴?2∈A
∵A∩B={1}∴1∈A∴方程x2+px+q=0的兩根為-2和1,
∴∴
變式:已知集合A={2+bx+c=0},B={2+mx+6=0},且A∩B={2},A∪B=B,求實(shí)數(shù)b,c,m的值.
解:∵A∩B={2}∴1∈B∴22+m?2+6=0,m=-5
∴B={2-5x+6=0}={2,3}∵A∪B=B∴
又∵A∩B={2}∴A={2}∴b=-(2+2)=4,c=2×2=4
∴b=-4,c=4,m=-5
【例4】已知集合A={x(x-1)(x+1)(x+2)>0},集合B滿足:A∪B={>-2},且A∩B={x1<>
分析:先化簡集合A,然后由A∪B和A∩B分別確定數(shù)軸上哪些元素屬于B,哪些元素不屬于B。
解答:A={x-2<><-1或x>1}。由A∩B={x1-2}可知[-1,1]B,而(-∞,-2)∩B=ф。<-1或x>
<><-1或x>
綜合以上各式有B={x-1≤x≤5}
變式1:若A={3+2x2-8x>0},B={2+ax+b≤0},已知A∪B={>-4},A∩B=Φ,求a,b。(答案:a=-2,b=0)
點(diǎn)評:在解有關(guān)不等式解集一類集合問題,應(yīng)注意用數(shù)形結(jié)合的方法,作出數(shù)軸來解之。
變式2:設(shè)M={2-2x-3=0},N={xax-1=0},若M∩N=N,求所有滿足條件的a的集合。
解答:M={-1,3},∵M(jìn)∩N=N,∴NM
①當(dāng)時,ax-1=0無解,∴a=0②
綜①②得:所求集合為{-1,0,}
【例5】已知集合,函數(shù)y=log2(ax2-2x+2)的定義域?yàn)镼,若P∩Q≠Φ,求實(shí)數(shù)a的取值范圍。
分析:先將原問題轉(zhuǎn)化為不等式ax2-2x+2>0在有解,再利用參數(shù)分離求解。
解答:(1)若,在內(nèi)有有解
令當(dāng)時,
所以a>-4,所以a的取值范圍是
變式:若關(guān)于x的方程有實(shí)根,求實(shí)數(shù)a的取值范圍。
解答:
點(diǎn)評:解決含參數(shù)問題的題目,一般要進(jìn)行分類討論,但并不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的關(guān)鍵。
三.隨堂演練
選擇題
1.下列八個關(guān)系式①{0}=②=0③{}④{}⑤{0}
⑥0⑦{0}⑧{}其中正確的個數(shù)
(A)4(B)5(C)6(D)7
2.集合{1,2,3}的真子集共有
(A)5個(B)6個(C)7個(D)8個
3.集合A={x}B={}C={}又則有
(A)(a+b)A(B)(a+b)B(C)(a+b)C(D)(a+b)A、B、C任一個
4.設(shè)A、B是全集U的兩個子集,且AB,則下列式子成立的是
(A)CUACUB(B)CUACUB=U
(C)ACUB=(D)CUAB=
5.已知集合A={},B={}則A=
(A)R(B){}
(C){}(D){}
6.下列語句:(1)0與{0}表示同一個集合;(2)由1,2,3組成的集合可表示為
{1,2,3}或{3,2,1};(3)方程(x-1)2(x-2)2=0的所有解的集合可表示為{1,1,2};(4)集合{}是有限集,正確的是
(A)只有(1)和(4)(B)只有(2)和(3)
(C)只有(2)(D)以上語句都不對
7.設(shè)S、T是兩個非空集合,且ST,TS,令X=S那么S∪X=
(A)X(B)T(C)Φ(D)S
8設(shè)一元二次方程ax2+bx+c=0(a<0)的根的判別式,則不等式ax2+bx+c0的解集為
(A)R(B)(C){}(D){}
填空題
9.在直角坐標(biāo)系中,坐標(biāo)軸上的點(diǎn)的集合可表示為
10.若A={1,4,x},B={1,x2}且AB=B,則x=
11.若A={x}B={x},全集U=R,則A=
12.若方程8x2+(k+1)x+k-7=0有兩個負(fù)根,則k的取值范圍是
13設(shè)集合A={},B={x},且AB,則實(shí)數(shù)k的取值范圍是。
14.設(shè)全集U={x為小于20的非負(fù)奇數(shù)},若A(CUB)={3,7,15},(CUA)B={13,17,19},又(CUA)(CUB)=,則AB=
解答題
15(8分)已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},若AB={-3},求實(shí)數(shù)a。
16(12分)設(shè)A=,B=,
其中xR,如果AB=B,求實(shí)數(shù)a的取值范圍。
四.習(xí)題答案
選擇題
12345678
CCBCBCDD
填空題
9.{(x,y)}10.0,11.{x,或x3}12.{}13.{}14.{1,5,9,11}
解答題
15.a=-1
16.提示:A={0,-4},又AB=B,所以BA
(Ⅰ)B=時,4(a+1)2-4(a2-1)<0,得a<-1
(Ⅱ)B={0}或B={-4}時,0得a=-1
(Ⅲ)B={0,-4},解得a=1
綜上所述實(shí)數(shù)a=1或a-1
高一數(shù)學(xué)題集合知識點(diǎn)必修一
集合具有某種特定性質(zhì)的事物的總體。這里的“事物”可以是人,物品,也可以是數(shù)學(xué)元素。例如:1、分散的人或事物聚集到一起;使聚集:緊急~。2、數(shù)學(xué)名詞。一組具有某種共同性質(zhì)的數(shù)學(xué)元素:有理數(shù)的~。3、口號等等。集合在數(shù)學(xué)概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學(xué)的基本概念,專門研究集合的理論叫做集合論??低?Cantor,G.F.P.,1845年—1918年,德國數(shù)學(xué)家先驅(qū),是集合論的,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學(xué)的所有領(lǐng)域。
集合,在數(shù)學(xué)上是一個基礎(chǔ)概念。什么叫基礎(chǔ)概念?基礎(chǔ)概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下“定義”。
集合是把人們的直觀的或思維中的某些確定的能夠區(qū)分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。
元素與集合的關(guān)系
元素與集合的關(guān)系有“屬于”與“不屬于”兩種。
集合與集合之間的關(guān)系
某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性?!赫f明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作A?B。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作A?B。中學(xué)教材課本里將?符號下加了一個≠符號(如右圖),不要混淆,考試時還是要以課本為準(zhǔn)。所有男人的集合是所有人的集合的真子集?!?/p>
集合的幾種運(yùn)算法則
并集:以屬于A或?qū)儆贐的元素為元素的集合稱為A與B的并(集),記作A∪B(或B∪A),讀作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以屬于A且屬于B的元差集表示
素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那么因?yàn)锳和B中都有1,5,所以A∩B={1,5}。再來看看,他們兩個中含有1,2,3,5這些個元素,不管多少,反正不是你有,就是我有。那么說A∪B={1,2,3,5}。圖中的陰影部分就是A∩B。有趣的是;例如在1到105中不是3,5,7的整倍數(shù)的數(shù)有多少個。結(jié)果是3,5,7每項(xiàng)減集合
1再相乘。48個。對稱差集:設(shè)A,B為集合,A與B的對稱差集A?B定義為:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},則A?B={a,c,d}對稱差運(yùn)算的另一種定義是:A?B=(A∪B)-(A∩B)無限集:定義:集合里含有無限個元素的集合叫做無限集有限集:令N是正整數(shù)的全體,且N_n={1,2,3,……,n},如果存在一個正整數(shù)n,使得集合A與N_n一一對應(yīng),那么A叫做有限集合。差:以屬于A而不屬于B的元素為元素的集合稱為A與B的差(集)。記作:AB={x│x∈A,x不屬于B}。注:空集包含于任何集合,但不能說“空集屬于任何集合”.補(bǔ)集:是從差集中引出的概念,指屬于全集U不屬于集合A的元素組成的集合稱為集合A的補(bǔ)集,記作CuA,即CuA={x|x∈U,且x不屬于A}空集也被認(rèn)為是有限集合。例如,全集U={1,2,3,4,5}而A={1,2,5}那么全集有而A中沒有的3,4就是CuA,是A的補(bǔ)集。CuA={3,4}。在信息技術(shù)當(dāng)中,常常把CuA寫成~A。
集合元素的性質(zhì)
1.確定性:每一個對象都能確定是不是某一集合的元素,沒有確定性就不能成為集合,例如“個子高的同學(xué)”“很小的數(shù)”都不能構(gòu)成集合。這個性質(zhì)主要用于判斷一個集合是否能形成集合。2.獨(dú)立性:集合中的元素的個數(shù)、集合本身的個數(shù)必須為自然數(shù)。3.互異性:集合中任意兩個元素都是不同的對象。如寫成{1,1,2},等同于{1,2}?;ギ愋允辜现械脑厥菦]有重復(fù),兩個相同的對象在同一個集合中時,只能算作這個集合的一個元素。4.無序性:{a,b,c}{c,b,a}是同一個集合。5.純粹性:所謂集合的純粹性,用個例子來表示。集合A={x|x<2},集合A中所有的元素都要符合x<2,這就是集合純粹性。6.完備性:仍用上面的例子,所有符合x<2的數(shù)都在集合A中,這就是集合完備性。完備性與純粹性是遙相呼應(yīng)的。
集合有以下性質(zhì)
若A包含于B,則A∩B=A,A∪B=B
集合的表示方法
集合常用大寫拉丁字母來表示,如:A,B,C…而對于集合中的元素則用小寫的拉丁字母來表示,如:a,b,c…拉丁字母只是相當(dāng)于集合的名字,沒有任何實(shí)際的意義。將拉丁字母賦給集合的方法是用一個等式來表示的,例如:A={…}的形式。等號左邊是大寫的拉丁字母,右邊花括號括起來的,括號內(nèi)部是具有某種共同性質(zhì)的數(shù)學(xué)元素。
常用的有列舉法和描述法。1.列舉法﹕常用于表示有限集合,把集合中的所有元素一一列舉出來﹐寫在大括號內(nèi)﹐這種表示集合的方法叫做列舉法。{1,2,3,……}2.描述法﹕常用于表示無限集合,把集合中元素的公共屬性用文字﹐符號或式子等描述出來﹐寫在大括號內(nèi)﹐這種表示集合的方法叫做描述法。{x|P}(x為該集合的元素的一般形式,P為這個集合的元素的共同屬性)如:小于π的正實(shí)數(shù)組成的集合表示為:{x|0
4.自然語言常用數(shù)集的符號:(1)全體非負(fù)整數(shù)的集合通常簡稱非負(fù)整數(shù)集(或自然數(shù)集),記作N;不包括0的自然數(shù)集合,記作N(2)非負(fù)整數(shù)集內(nèi)排除0的集,也稱正整數(shù)集,記作Z+;負(fù)整數(shù)集內(nèi)也排除0的集,稱負(fù)整數(shù)集,記作Z-(3)全體整數(shù)的集合通常稱作整數(shù)集,記作Z(4)全體有理數(shù)的集合通常簡稱有理數(shù)集,記作Q。Q={p/q|p∈Z,q∈N,且p,q互質(zhì)}(正負(fù)有理數(shù)集合分別記作Q+Q-)(5)全體實(shí)數(shù)的集合通常簡稱實(shí)數(shù)集,記作R(正實(shí)數(shù)集合記作R+;負(fù)實(shí)數(shù)記作R-)(6)復(fù)數(shù)集合計(jì)作C集合的運(yùn)算:集合交換律A∩B=B∩AA∪B=B∪A集合結(jié)合律(A∩B)∩C=A∩(B∩C)(A∪B)∪C=A∪(B∪C)集合分配律A∩(B∪C)=(A∩B)∪(A∩C)A∪(B∩C)=(A∪B)∩(A∪C)集合德.摩根律集合
Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB集合“容斥原理”在研究集合時,會遇到有關(guān)集合中的元素個數(shù)問題,我們把有限集合A的元素個數(shù)記為card(A)。例如A={a,b,c},則card(A)=3card(A∪B)=card(A)+card(B)-card(A∩B)card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)1885年德國數(shù)學(xué)家,集合論創(chuàng)始人康托爾談到集合一詞,列舉法和描述法是表示集合的常用方式。集合吸收律A∪(A∩B)=AA∩(A∪B)=A集合求補(bǔ)律A∪CuA=UA∩CuA=Φ設(shè)A為集合,把A的全部子集構(gòu)成的集合叫做A的冪集德摩根律A-(BUC)=(A-B)∩(A-C)A-(B∩C)=(A-B)U(A-C)~(BUC)=~B∩~C~(B∩C)=~BU~C~Φ=E~E=Φ特殊集合的表示復(fù)數(shù)集C實(shí)數(shù)集R正實(shí)數(shù)集R+負(fù)實(shí)數(shù)集R-整數(shù)集Z正整數(shù)集Z+負(fù)整數(shù)集Z-有理數(shù)集Q正有理數(shù)集Q+負(fù)有理數(shù)集Q-不含0的有理數(shù)集Q
高一數(shù)學(xué)題集合知識點(diǎn)必修一
并集:以屬于A或?qū)儆贐的元素為元素的集合稱為A與B的并(集),記作A∪B(或B∪A),讀作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以屬于A且屬于B的元差集表示
素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那么因?yàn)锳和B中都有1,5,所以A∩B={1,5}。再來看看,他們兩個中含有1,2,3,5這些個元素,不管多少,反正不是你有,就是我有。那么說A∪B={1,2,3,5}。圖中的陰影部分就是A∩B。有趣的是;例如在1到105中不是3,5,7的整倍數(shù)的數(shù)有多少個。結(jié)果是3,5,7每項(xiàng)減集合
1再相乘。48個。對稱差集:設(shè)A,B為集合,A與B的對稱差集A?B定義為:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},則A?B={a,c,d}對稱差運(yùn)算的另一種定義是:A?B=(A∪B)-(A∩B)無限集:定義:集合里含有無限個元素的集合叫做無限集有限集:令N是正整數(shù)的全體,且N_n={1,2,3,……,n},如果存在一個正整數(shù)n,使得集合A與N_n一一對應(yīng),那么A叫做有限集合。差:以屬于A而不屬于B的元素為元素的集合稱為A與B的差(集)。記作:A\B={x│x∈A,x不屬于B}。注:空集包含于任何集合,但不能說“空集屬于任何集合”.補(bǔ)集:是從差集中引出的概念,指屬于全集U不屬于集合A的元素組成的集合稱為集合A的補(bǔ)集,記作CuA,即CuA={x|x∈U,且x不屬于A}空集也被認(rèn)為是有限集合。例如,全集U={1,2,3,4,5}而A={1,2,5}那么全集有而A中沒有的3,4就是CuA,是A的補(bǔ)集。CuA={3,4}。在信息技術(shù)當(dāng)中,常常把CuA寫成~A。
至于學(xué)習(xí)方法的講究,每位同學(xué)可根據(jù)自己的基礎(chǔ)、學(xué)習(xí)習(xí)慣、智力特點(diǎn)選擇適合自己的學(xué)習(xí)方法,這里主要根據(jù)教材的特點(diǎn)提出幾點(diǎn)供大家學(xué)習(xí)時參考。
l、要重視數(shù)學(xué)概念的理解。高一數(shù)學(xué)與初中數(shù)學(xué)的區(qū)別是概念多并且較抽象,學(xué)起來“味道”同以往很不一樣,解題方法通常就來自概念本身。學(xué)習(xí)概念時,僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義并掌握各種等價的表達(dá)方式。例如,為什么函數(shù)y=f(x)與y=f-1(x)的圖象關(guān)于直線y=x對稱,而y=f(x)與x=f-1(y)卻有相同的圖象;又如,為什么當(dāng)f(x-l)=f(1-x)時,函數(shù)y=f(x)的圖象關(guān)于y軸對稱,而y=f(x-l)與y=f(1-x)的圖象卻關(guān)于直線x=1對稱,不透徹理解一個圖象的對稱性與兩個圖象的對稱關(guān)系的區(qū)別,兩者很容易混淆。
2、‘學(xué)習(xí)立體幾何要有較好的空間想象能力,而培養(yǎng)空間想象能力的辦法有二:一是勤畫圖;二是自制模型協(xié)助想象,如利用四直角三棱錐的模型對照習(xí)題多看,多想。但最終要達(dá)到不依賴模型也能想象的境界。
3、學(xué)習(xí)解析幾何切忌把它學(xué)成代數(shù)、只計(jì)算不畫圖,正確的辦法是邊畫圖邊計(jì)算,要能在畫圖中尋求計(jì)算途徑。
4、在個人鉆研的基礎(chǔ)上,邀幾個程度相當(dāng)?shù)耐瑢W(xué)一起討論,這也是一種好的學(xué)習(xí)方法,這樣做??梢园褑栴}解決得更加透徹,對大家都有益。
高一數(shù)學(xué)題集合知識點(diǎn)必修一相關(guān)文章:
★ 高一數(shù)學(xué)必修一集合知識點(diǎn)復(fù)習(xí)資料
★ 高一數(shù)學(xué)必修一集合知識點(diǎn)歸納
★ 高一數(shù)學(xué)必修集合知識點(diǎn)歸納
★ 高一數(shù)學(xué)集合知識點(diǎn)及例題講解
★ 高一數(shù)學(xué)必修一集合的運(yùn)算知識點(diǎn)
★ 2017高一數(shù)學(xué)必修1集合知識點(diǎn)
★ 高一必修一數(shù)學(xué)集合知識點(diǎn)總結(jié)