特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學習啦 > 學習方法 > 高中學習方法 > 高一學習方法 > 高一數(shù)學 >

高中數(shù)學必修1知識點總結

時間: 維維20 分享

機會從不會“失掉”,你失掉了,自有別人會得到。不要凡事在天,守株待兔,更不要寄希望于“機會”。下面給大家?guī)硪恍└咧袛?shù)學必修1知識點,希望對大家有所幫助。

高中數(shù)學必修1知識點總結

高中數(shù)學必修1知識點

1

1.數(shù)列的定義

按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個數(shù)都叫做數(shù)列的項.

(1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.

(2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數(shù)列:-1,1,-1,1,….  (3)數(shù)列的項與它的項數(shù)是不同的,數(shù)列的項是指這個數(shù)列中的某一個確定的數(shù),是一個函數(shù)值,也就是相當于f(n),而項數(shù)是指這個數(shù)在數(shù)列中的位置序號,它是自變量的值,相當于f(n)中的n.

(4)次序對于數(shù)列來講是十分重要的,有幾個相同的數(shù),由于它們的排列次序不同,構成的數(shù)列就不是一個相同的數(shù)列,顯然數(shù)列與數(shù)集有本質的區(qū)別.如:2,3,4,5,6這5個數(shù)按不同的次序排列時,就會得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.

2.數(shù)列的分類

(1)根據(jù)數(shù)列的項數(shù)多少可以對數(shù)列進行分類,分為有窮數(shù)列和無窮數(shù)列.在寫數(shù)列時,對于有窮數(shù)列,要把末項寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數(shù)列.

(2)按照項與項之間的大小關系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動數(shù)列、常數(shù)列.

3.數(shù)列的通項公式

數(shù)列是按一定次序排列的一列數(shù),其內涵的本質屬性是確定這一列數(shù)的規(guī)律,這個規(guī)律通常是用式子f(n)來表示的。

這兩個通項公式形式上雖然不同,但表示同一個數(shù)列,正像每個函數(shù)關系不都能用解析式表達出來一樣,也不是每個數(shù)列都能寫出它的通項公式;有的數(shù)列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個數(shù)列前面的有限項,無其他說明,數(shù)列是不能確定的,通項公式更非.如:數(shù)列1,2,3,4,…,

由公式寫出的后續(xù)項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據(jù)數(shù)列的構成規(guī)律,多觀察分析,真正找到數(shù)列的內在規(guī)律,由數(shù)列前幾項寫出其通項公式,沒有通用的方法可循.

再強調對于數(shù)列通項公式的理解注意以下幾點:

(1)數(shù)列的通項公式實際上是一個以正整數(shù)集N或它的有限子集{1,2,…,n}為定義域的函數(shù)的表達式.

(2)如果知道了數(shù)列的通項公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個數(shù)列的各項;同時,用數(shù)列的通項公式也可判斷某數(shù)是否是某數(shù)列中的一項,如果是的話,是第幾項.

(3)如所有的函數(shù)關系不一定都有解析式一樣,并不是所有的數(shù)列都有通項公式.

如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構成的數(shù)列1,1.4,1.41,1.414,1.4142,…就沒有通項公式.

(4)有的數(shù)列的通項公式,形式上不一定是的,正如舉例中的:

(5)有些數(shù)列,只給出它的前幾項,并沒有給出它的構成規(guī)律,那么僅由前面幾項歸納出的數(shù)列通項公式并不.

4.數(shù)列的圖象

對于數(shù)列4,5,6,7,8,9,10每一項的序號與這一項有下面的對應關系:

序號:1234567

項:45678910

這就是說,上面可以看成是一個序號集合到另一個數(shù)的集合的映射.因此,從映射、函數(shù)的觀點看,數(shù)列可以看作是一個定義域為正整集N(或它的有限子集{1,2,3,…,n})的函數(shù),當自變量從小到大依次取值時,對應的一列函數(shù)值.這里的函數(shù)是一種特殊的函數(shù),它的自變量只能取正整數(shù).

由于數(shù)列的項是函數(shù)值,序號是自變量,數(shù)列的通項公式也就是相應函數(shù)和解析式.

數(shù)列是一種特殊的函數(shù),數(shù)列是可以用圖象直觀地表示的.

數(shù)列用圖象來表示,可以以序號為橫坐標,相應的項為縱坐標,描點畫圖來表示一個數(shù)列,在畫圖時,為方便起見,在平面直角坐標系兩條坐標軸上取的單位長度可以不同,從數(shù)列的圖象表示可以直觀地看出數(shù)列的變化情況,但不精確.

把數(shù)列與函數(shù)比較,數(shù)列是特殊的函數(shù),特殊在定義域是正整數(shù)集或由以1為首的有限連續(xù)正整數(shù)組成的集合,其圖象是無限個或有限個孤立的點.

5.遞推數(shù)列

一堆鋼管,共堆放了七層,自上而下各層的鋼管數(shù)構成一個數(shù)列:4,5,6,7,8,9,10.①

數(shù)列①還可以用如下方法給出:自上而下第一層的鋼管數(shù)是4,以下每一層的鋼管數(shù)都比上層的鋼管數(shù)多1。

高中數(shù)學必修1知識點

2

1.不等式的定義

在客觀世界中,量與量之間的不等關系是普遍存在的,我們用數(shù)學符號連接兩個數(shù)或代數(shù)式以表示它們之間的不等關系,含有這些不等號的式子,叫做不等式.

2.比較兩個實數(shù)的大小

兩個實數(shù)的大小是用實數(shù)的運算性質來定義的,

有a-b>0?;a-b=0?;a-b<0?.

另外,若b>0,則有>1?;=1?;<1?.

概括為:作差法,作商法,中間量法等.

3.不等式的性質

(1)對稱性:a>b?;

(2)傳遞性:a>b,b>c?;

(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

(5)可乘方:a>b>0?(n∈N,n≥2);

(6)可開方:a>b>0?(n∈N,n≥2).

復習指導

1.“一個技巧”作差法變形的技巧:作差法中變形是關鍵,常進行因式分解或配方.

2.“一種方法”待定系數(shù)法:求代數(shù)式的范圍時,先用已知的代數(shù)式表示目標式,再利用多項式相等的法則求出參數(shù),最后利用不等式的性質求出目標式的范圍.

3.“兩條常用性質”

(1)倒數(shù)性質:①a>b,ab>0?<;

②a<0

③a>b>0,0;

④0

(2)若a>b>0,m>0,則

①真分數(shù)的性質:<;>(b-m>0);

②假分數(shù)的性質:>;<(b-m>0).

高中數(shù)學必修1知識點3

1.滿足二元一次不等式(組)的x和y的取值構成有序數(shù)對(x,y),稱為二元一次不等式(組)的一個解,所有這樣的有序數(shù)對(x,y)構成的集合稱為二元一次不等式(組)的解集。

2.二元一次不等式(組)的每一個解(x,y)作為點的坐標對應平面上的一個點,二元一次不等式(組)的解集對應平面直角坐標系中的一個半平面(平面區(qū)域)。

3.直線l:Ax+By+C=0(A、B不全為零)把坐標平面劃分成兩部分,其中一部分(半個平面)對應二元一次不等式Ax+By+C>0(或≥0),另一部分對應二元一次不等式Ax+By+C<0(或≤0)。

4.已知平面區(qū)域,用不等式(組)表示它,其方法是:在所有直線外任取一點(如本題的原點(0,0)),將其坐標代入Ax+By+C,判斷正負就可以確定相應不等式。

5.一個二元一次不等式表示的平面區(qū)域是相應直線劃分開的半個平面,一般用特殊點代入二元一次不等式檢驗就可以判定,當直線不過原點時常選原點檢驗,當直線過原點時,常選(1,0)或(0,1)代入檢驗,二元一次不等式組表示的平面區(qū)域是它的各個不等式所表示的平面區(qū)域的公共部分,注意邊界是實線還是虛線的含義?!熬€定界,點定域”。

6.滿足二元一次不等式(組)的整數(shù)x和y的取值構成的有序數(shù)對(x,y),稱為這個二元一次不等式(組)的一個解。所有整數(shù)解對應的點稱為整點(也叫格點),它們都在這個二元一次不等式(組)表示的平面區(qū)域內。

7.畫二元一次不等式Ax+By+C≥0所表示的平面區(qū)域時,應把邊界畫成實線,畫二元一次不等式Ax+By+C>0所表示的平面區(qū)域時,應把邊界畫成虛線。

8.若點P(x0,y0)與點P1(x1,y1)在直線l:Ax+By+C=0的同側,則Ax0+By0+C與Ax1+Byl+C符號相同;若點P(x0,y0)與點P1(x1,y1)在直線l:Ax+By+C=0的兩側,則Ax0+By0+C與Ax1+Byl+C符號相反。

9.從實際問題中抽象出二元一次不等式(組)的步驟是:

(1)根據(jù)題意,設出變量;

(2)分析問題中的變量,并根據(jù)各個不等關系列出常量與變量x,y之間的不等式;

(3)把各個不等式連同變量x,y有意義的實際范圍合在一起,組成不等式組。

學好高中數(shù)學的方法有哪些

理解知識放首位。

比如:學數(shù)學集合的時候,怎么理解交、并、補呢?交、并、補是運算,而運算要定義在某個集合之上,所以交、并、補這三種運算定義在哪個集合之上呢?我們把所有的集合放在一起,構成一個集合(這個集合里的元素是集合,還要注意:我們約定采用ZFC公理體系,其中的正則公理可以將“羅素悖論”排除在外.下文不再重復這個約定),記為M,交、并、補就是定義在集合M上的運算。而運算首先要滿足封閉性,所以這三種運算的結果,都是一個集合。

既然談到運算,怎么能不討論運算律呢?例如,

數(shù)學集合的交滿足交換律、結合律;集合的交對并滿足分配律;集合的補對交滿足德摩根律……這些都是需要搞清楚的問題。有同學覺得給定一種二元運算,交換律、結合律都會天然滿足,大錯特錯啊。例如,實數(shù)的減法既不滿足交換律,也不滿足結合律;函數(shù)的復合滿足結合律,不滿足交換律;向量的內積滿足交換律,不滿足結合律;命題的或既滿足交換律,也滿足結合律.

這些知識聽上去有點“虛”,但其實是數(shù)學的精華所在。

高中數(shù)學必修1知識點總結相關文章:

高一數(shù)學必修一知識點匯總

高一數(shù)學必修1知識點歸納

高中數(shù)學必修一知識點總結

高中數(shù)學必修一知識點框架圖

高一數(shù)學必修一知識點總結歸納

高中數(shù)學必修一復習提綱

高一數(shù)學知識點總結【必修一】

高中數(shù)學高一數(shù)學必修一知識點

高中數(shù)學高一數(shù)學必修一知識點與學習方法

高一數(shù)學知識點總結歸納

778810