九年級數學相關知識點有哪些
從這個意義上,數學屬于形式科學,而不是自然科學。不同的數學家和哲學家對數學的確切范圍和定義有一系列的看法。下面小編為大家?guī)?a href='http://m.rzpgrj.com/xuexiff/jiunianjishuxue/' target='_blank'>九年級數學相關知識點有哪些,希望大家喜歡!
九年級數學相關知識點
1.過兩點有且只有一條直線
2.兩點之間線段最短
3.同角或等角的補角相等
4.同角或等角的余角相等
5.過一點有且只有一條直線和已知直線垂直
6.直線外一點與直線上各點連接的所有線段中,垂線段最短
7.平行公理經過直線外一點,有且只有一條直線與這條直線平行
8.如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9.同位角相等,兩直線平行
10.內錯角相等,兩直線平行
11.同旁內角互補,兩直線平行
12.兩直線平行,同位角相等
13.兩直線平行,內錯角相等
14.兩直線平行,同旁內角互補
15.定理三角形兩邊的和大于第三邊
16.推論三角形兩邊的差小于第三邊
17.三角形內角和定理三角形三個內角的和等于180°
18.推論1直角三角形的兩個銳角互余
19.推論2三角形的一個外角等于和它不相鄰的兩個內角的和
20.推論3三角形的一個外角大于任何一個和它不相鄰的內角
21.全等三角形的對應邊、對應角相等
22.邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等
23.角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24.推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等
25.邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等
26.斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等
27.定理1在角的平分線上的點到這個角的兩邊的距離相等
28.定理2到一個角的兩邊的距離相同的點,在這個角的平分線上
29.角的平分線是到角的兩邊距離相等的所有點的集合
30.等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)
31.推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
32.等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33.推論3等邊三角形的各角都相等,并且每一個角都等于60°
34.等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35.推論1三個角都相等的三角形是等邊三角形
36.推論2有一個角等于60°的等腰三角形是等邊三角形
37.在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
38.直角三角形斜邊上的中線等于斜邊上的一半
39.定理線段垂直平分線上的點和這條線段兩個端點的距離相等
40.逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41.線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42.定理1關于某條直線對稱的兩個圖形是全等形
43.定理2如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線
44.定理3兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
45.逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱
46.勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2
47.勾股定理的逆定理如果三角形的三邊長a、b、c有關系a^2+b^2=c^2,那么這個三角形是直角三角形
48.定理四邊形的內角和等于360°
49.四邊形的外角和等于360°
50.多邊形內角和定理n邊形的內角的和等于(n-2)×180°
51.推論任意多邊的外角和等于360°
初三數學總復習知識點
1二元一次方程組
1.定義:含有兩個未知數,并且未知項的最高次數是1的整式方程叫做二元一次方程。
2.二元一次方程組的解法
(1)代入法
由一個二次方程和一個一次方程所組成的方程組通常用代入法來解,這是基本的消元降次方法。
(2)因式分解法
在二元二次方程組中,至少有一個方程可以分解時,可采用因式分解法通過消元降次來解。
(3)配方法
將一個式子,或一個式子的某一部分通過恒等變形化為完全平方式或幾個完全平方式的和。
(4)韋達定理法
通過韋達定理的逆定理,可以利用兩數的和積關系構造一元二次方程。
(5)消常數項法
當方程組的兩個方程都缺一次項時,可用消去常數項的方法解。
2不等式的判定
1.常見的不等號有“>”“<”“≤” “≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;
2.在不等式“a>b”或“a<b”中,a叫作不等式的左邊,b叫作不等式的右邊;< div="">
3.不等號的開口所對的數較大,不等號的尖頭所對的數較小;
4.在列不等式時,一定要注意不等式關系的關鍵字,如:正數、非負數、不大于、小于等。
3二次函數的性質
1.性質:(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過原點。
2.k,b與函數圖像所在象限:
當k>0時,直線必通過一、三象限,y隨x的增大而增大;
當k<0時,直線必通過二、四象限,y隨x的增大而減小。
當b>0時,直線必通過一、二象限;
當b=0時,直線通過原點;
當b<0時,直線必通過三、四象限。
特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數的圖像。
這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。
4三角形中位線定理的作用
位置關系:可以證明兩條直線平行。
數量關系:可以證明線段的倍分關系。
常用結論:任一個三角形都有三條中位線,由此有:
結論1:三條中位線組成一個三角形,其周長為原三角形周長的一半。
結論2:三條中位線將原三角形分割成四個全等的三角形。
結論3:三條中位線將原三角形劃分出三個面積相等的平行四邊形。
結論4:三角形一條中線和與它相交的中位線互相平分。
結論5:三角形中任意兩條中位線的夾角與這夾角所對的三角形的頂角相等。
5圓
1.在一個平面內,一動點以一定點為中心,以一定長度為距離旋轉一周所形成的封閉曲線叫做圓。圓有無數條對稱軸。
2.徑
連接圓心和圓上的任意一點的線段叫做半徑,字母表示為r。
通過圓心并且兩端都在圓上的線段叫做直徑,字母表示為d。
直徑所在的直線是圓的對稱軸。在同一個圓中,圓的直徑 d=2r。
3.弦:連接圓上任意兩點的線段叫做弦。
在同一個圓內最長的弦是直徑。直徑所在的直線是圓的對稱軸,因此,圓的對稱軸有無數條。
4.弧:圓上任意兩點間的部分叫做圓弧。
5.圓的垂徑定理
(1)垂直于弦的直徑平分這條弦,并且平分這條弦所對的兩條弧。
(2)弦的垂直平分線經過圓心,并且平分弦作對的兩條弧。
(3)平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧。
6.圓的切線定理
(1)垂直于過切點的半徑;經過半徑的外端點,并且垂直于這條半徑的直線,是這個圓的切線。
(2)切線的判定方法:經過半徑外端并且垂直于這條半徑的直線是圓的切線。
7.圓的周角定理
(1)圓周角的度數等于它所對的弧的度數的一半。
(2)一條弧所對的圓周角等于它所對的圓心角的一半。
(3)“等弧對等角”、“等角對等弧”。
(4)“直徑對直角”、“直角對直徑”。
1、做好預習:單元預習時粗讀,了解近階段的學習內容,課時預習時細讀,注重知識的形成過程,對難以理解的概念、公式和法則等要做好記錄,以便帶著問題聽課。堅持預習,找到疑點,變被動學習為主動學習,能大大提高學習效率噢,興趣是最好的老師嘛。
2、認真聽課:聽課應包括聽、思、記三個方面。聽,聽知識形成的來龍去脈,聽重點和難點(記住預習中的疑點了嗎?更要聽仔細了),聽例題的解法和要求,聽蘊含的數學思想和方法,聽課堂小結。思,一是要善于聯(lián)想、類比和歸納,二是要敢于質疑,提出問題,大膽猜想。記,當然是指課堂筆記了,不是記得多就是有效的知道嗎?影響了聽課可就不如不記了,記什么,什么時候記,可是有學問的哩,記方法,記技巧,記疑點,記要求,記注意點,記住課后一定要整理筆記。
3、認真解題:課堂練習是最及時最直接的反饋,一定不能錯過的,不要急于完成作業(yè),要先看看你的筆記本,回顧學習內容,加深理解,強化記憶,很重要噢。
九年級數學相關知識點有哪些相關文章: