2022年初一數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)歸納
2022年初一數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)歸納有哪些?初一數(shù)學(xué)上冊(cè)知識(shí)隨著時(shí)間推移,所學(xué)知識(shí)不斷增加,就會(huì)感到內(nèi)容繁雜、頭緒不清,記憶負(fù)擔(dān)加重。一起來(lái)看看2022年初一數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)歸納,歡迎查閱!
↓↓↓點(diǎn)擊獲取"初一知識(shí)點(diǎn)"↓↓↓
★ 初一各科重點(diǎn)知識(shí)點(diǎn)歸納
★七年級(jí)英語(yǔ)語(yǔ)法知識(shí)點(diǎn)匯總
★ 初一的化學(xué)知識(shí)點(diǎn)總結(jié)
初一數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)整理
知識(shí)點(diǎn)1:正、負(fù)數(shù)的概念:我們把像3、2、+0.5、0.03%這樣的數(shù)叫做正數(shù),它們都是比0大的數(shù);像-3、-2、-0.5、 -0.03%這樣數(shù)叫做負(fù)數(shù)。它們都是比0小的數(shù)。0既不是正數(shù)也不是負(fù)數(shù)。我們可以用正數(shù)與負(fù)數(shù)表示具有相反意義的量。
知識(shí)點(diǎn)2:有理數(shù)的概念和分類(lèi):整數(shù)和分?jǐn)?shù)統(tǒng)稱(chēng)有理數(shù)。有理數(shù)的分類(lèi)主要有兩種:
注:有限小數(shù)和無(wú)限循環(huán)小數(shù)都可看作分?jǐn)?shù)。
知識(shí)點(diǎn)3:數(shù)軸的概念:像下面這樣規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線(xiàn)叫做數(shù)軸。
知識(shí)點(diǎn)4:絕對(duì)值的概念:
(1) 幾何意義:數(shù)軸上表示a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對(duì)值,記作|a|;
(2) 代數(shù)意義:一個(gè)正數(shù)的絕對(duì)值是它的本身;一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù);零的絕對(duì)值是零。
注:任何一個(gè)數(shù)的絕對(duì)值均大于或等于0(即非負(fù)數(shù)).
知識(shí)點(diǎn)5:相反數(shù)的概念:
(1) 幾何意義:在數(shù)軸上分別位于原點(diǎn)的兩旁,到原點(diǎn)的距離相等的兩個(gè)點(diǎn)所表示的數(shù),叫做互為相反數(shù);
(2) 代數(shù)意義:符號(hào)不同但絕對(duì)值相等的兩個(gè)數(shù)叫做互為相反數(shù)。0的相反數(shù)是0。
知識(shí)點(diǎn)6:有理數(shù)大小的比較:
有理數(shù)大小比較的基本法則:正數(shù)都大于零,負(fù)數(shù)都小于零,正數(shù)大于負(fù)數(shù)。
數(shù)軸上有理數(shù)大小的比較:在數(shù)軸上表示的兩個(gè)數(shù),右邊的數(shù)總比左邊的大。
用絕對(duì)值進(jìn)行有理數(shù)大小的比較:兩個(gè)正數(shù),絕對(duì)值大的正數(shù)大;兩個(gè)負(fù)數(shù),絕對(duì)值大的負(fù)數(shù)反而小。
知識(shí)點(diǎn)7:有理數(shù)加法法則:
(1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;
(2)異號(hào)兩數(shù)相加,絕對(duì)值相等時(shí),和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;
(3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù).
知識(shí)點(diǎn)8:有理數(shù)加法運(yùn)算律:
加法交換律:兩個(gè)數(shù)相加,交換加數(shù)的位置,和不變。
加法結(jié)合律:三個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加,或者先把后兩個(gè)數(shù)相加,和不變。
知識(shí)點(diǎn)9:有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
知識(shí)點(diǎn)10:有理數(shù)加減混合運(yùn)算:根據(jù)有理數(shù)減法的法則,一切加法和減法的運(yùn)算,都可以統(tǒng)一成加法運(yùn)算,然后省略括號(hào)和加號(hào),并運(yùn)用加法法則、加法運(yùn)算律進(jìn)行計(jì)算。
知識(shí)點(diǎn)11: 乘法與除法
1.乘法法則
2.除法法則
3.多個(gè)非零的數(shù)相乘除最后結(jié)果符號(hào)如何確定
知識(shí)點(diǎn)12:倒數(shù)
1. 倒數(shù)概念
2. 如何求一個(gè)數(shù)的倒數(shù)?(注意與相反數(shù)的區(qū)別)
知識(shí)點(diǎn)13:乘方
1. 乘方的概念,乘方的結(jié)果叫什么?
2. 認(rèn)識(shí)底數(shù),指數(shù)
3. 正數(shù)的任何次冪是_________,零的任何次冪________
負(fù)數(shù)的偶次冪是_________奇次冪是________
知識(shí)點(diǎn)14:混合計(jì)算
注意:運(yùn)算順序是關(guān)鍵,計(jì)算時(shí)要嚴(yán)格按照順序運(yùn)算.考試經(jīng)常考帶乘方的計(jì)算.
知識(shí)點(diǎn)15:科學(xué)記數(shù)法
科學(xué)記數(shù)法的概念? 注意a的范圍
七年級(jí)(上)數(shù)學(xué)知識(shí)點(diǎn)歸納與總結(jié)
一、 知識(shí)梳理
知識(shí)點(diǎn)1:正、負(fù)數(shù)的概念:我們把像3、2、+0.5、0.03%這樣的數(shù)叫做正數(shù),它們都是比0大的數(shù);像-3、-2、-0.5、 -0.03%這樣數(shù)叫做負(fù)數(shù)。它們都是比0小的數(shù)。0既不是正數(shù)也不是負(fù)數(shù)。我們可以用正數(shù)與負(fù)數(shù)表示具有相反意義的量。
知識(shí)點(diǎn)2:有理數(shù)的概念和分類(lèi):整數(shù)和分?jǐn)?shù)統(tǒng)稱(chēng)有理數(shù)。有理數(shù)的分類(lèi)主要有兩種:
注:有限小數(shù)和無(wú)限循環(huán)小數(shù)都可看作分?jǐn)?shù)。
知識(shí)點(diǎn)3:數(shù)軸的概念:像下面這樣規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線(xiàn)叫做數(shù)軸。
知識(shí)點(diǎn)4:絕對(duì)值的概念:
(1) 幾何意義:數(shù)軸上表示a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對(duì)值,記作|a|;
(2) 代數(shù)意義:一個(gè)正數(shù)的絕對(duì)值是它的本身;一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù);零的絕對(duì)值是零。
注:任何一個(gè)數(shù)的絕對(duì)值均大于或等于0(即非負(fù)數(shù)).
知識(shí)點(diǎn)5:相反數(shù)的概念:
(1) 幾何意義:在數(shù)軸上分別位于原點(diǎn)的兩旁,到原點(diǎn)的距離相等的兩個(gè)點(diǎn)所表示的數(shù),叫做互為相反數(shù);
(2) 代數(shù)意義:符號(hào)不同但絕對(duì)值相等的兩個(gè)數(shù)叫做互為相反數(shù)。0的相反數(shù)是0。
知識(shí)點(diǎn)6:有理數(shù)大小的比較:
有理數(shù)大小比較的基本法則:正數(shù)都大于零,負(fù)數(shù)都小于零,正數(shù)大于負(fù)數(shù)。
數(shù)軸上有理數(shù)大小的比較:在數(shù)軸上表示的兩個(gè)數(shù),右邊的數(shù)總比左邊的大。
用絕對(duì)值進(jìn)行有理數(shù)大小的比較:兩個(gè)正數(shù),絕對(duì)值大的正數(shù)大;兩個(gè)負(fù)數(shù),絕對(duì)值大的負(fù)數(shù)反而小。
知識(shí)點(diǎn)7:有理數(shù)加法法則:
(1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;
(2)異號(hào)兩數(shù)相加,絕對(duì)值相等時(shí),和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;
(3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù).
知識(shí)點(diǎn)8:有理數(shù)加法運(yùn)算律:
加法交換律:兩個(gè)數(shù)相加,交換加數(shù)的位置,和不變。
加法結(jié)合律:三個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加,或者先把后兩個(gè)數(shù)相加,和不變。
知識(shí)點(diǎn)9:有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
知識(shí)點(diǎn)10:有理數(shù)加減混合運(yùn)算:根據(jù)有理數(shù)減法的法則,一切加法和減法的運(yùn)算,都可以統(tǒng)一成加法運(yùn)算,然后省略括號(hào)和加號(hào),并運(yùn)用加法法則、加法運(yùn)算律進(jìn)行計(jì)算。
知識(shí)點(diǎn)11: 乘法與除法
1.乘法法則
2.除法法則
3.多個(gè)非零的數(shù)相乘除最后結(jié)果符號(hào)如何確定
知識(shí)點(diǎn)12:倒數(shù)
1. 倒數(shù)概念
2. 如何求一個(gè)數(shù)的倒數(shù)?(注意與相反數(shù)的區(qū)別)
知識(shí)點(diǎn)13:乘方
1. 乘方的概念,乘方的結(jié)果叫什么?
2. 認(rèn)識(shí)底數(shù),指數(shù)
知識(shí)點(diǎn)14:混合計(jì)算
注意:運(yùn)算順序是關(guān)鍵,計(jì)算時(shí)要嚴(yán)格按照順序運(yùn)算.考試經(jīng)??紟С朔降挠?jì)算.
初一數(shù)學(xué)知識(shí)總結(jié)
第一章有理數(shù)
1.1正數(shù)與負(fù)數(shù)
①正數(shù):大于0的數(shù)叫正數(shù)。(根據(jù)需要,有時(shí)在正數(shù)前面也加上“+”)
②負(fù)數(shù):在以前學(xué)過(guò)的0以外的數(shù)前面加上負(fù)號(hào)“—”的數(shù)叫負(fù)數(shù)。與正數(shù)具有相反意義。
③0既不是正數(shù)也不是負(fù)數(shù)。0是正數(shù)和負(fù)數(shù)的分界,是的中性數(shù)。
注意:搞清相反意義的量:南北;東西;上下;左右;上升下降;高低;增長(zhǎng)減少等
1.2有理數(shù)
1、有理數(shù)(1)整數(shù):正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱(chēng)整數(shù);(2)分?jǐn)?shù);正分?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱(chēng)分?jǐn)?shù);
(3)有理數(shù):整數(shù)和分?jǐn)?shù)統(tǒng)稱(chēng)有理數(shù)。
2、數(shù)軸(1)定義:通常用一條直線(xiàn)上的點(diǎn)表示數(shù),這條直線(xiàn)叫數(shù)軸;
(2)數(shù)軸三要素:原點(diǎn)、正方向、單位長(zhǎng)度;
(3)原點(diǎn):在直線(xiàn)上任取一個(gè)點(diǎn)表示數(shù)0,這個(gè)點(diǎn)叫做原點(diǎn);
(4)數(shù)軸上的點(diǎn)和有理數(shù)的關(guān)系:所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)表示出來(lái),但數(shù)軸上
的點(diǎn),不都是表示有理數(shù)。
3、相反數(shù):只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù)。(例:2的相反數(shù)是-2;0的相反數(shù)是0)
4、絕對(duì)值:(1)數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對(duì)值,記作|a|。從幾何意義上講,
數(shù)的絕對(duì)值是兩點(diǎn)間的距離。
(2)一個(gè)正數(shù)的絕對(duì)值是它本身;一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù);0的絕對(duì)值是0。
兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小。
1.3有理數(shù)的加減法
①有理數(shù)加法法則:
1、同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加。
2、絕對(duì)值不相等的異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值?;橄喾磾?shù)的兩個(gè)數(shù)相加得0。
3、一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。
加法的交換律和結(jié)合律
②有理數(shù)減法法則:減去一個(gè)數(shù),等于加這個(gè)數(shù)的相反數(shù)。
1.4有理數(shù)的乘除法
①有理數(shù)乘法法則:兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘;
任何數(shù)同0相乘,都得0;
乘積是1的兩個(gè)數(shù)互為倒數(shù)。
乘法交換律/結(jié)合律/分配律
②有理數(shù)除法法則:除以一個(gè)不等于0的數(shù),等于乘這個(gè)數(shù)的倒數(shù);
兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除;
0除以任何一個(gè)不等于0的數(shù),都得0。
1.5有理數(shù)的乘方
1、求n個(gè)相同因數(shù)的積的運(yùn)算,叫乘方,乘方的結(jié)果叫冪。在a的n次方中,a叫做底數(shù),n叫做
指數(shù)。負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何次冪都是0。
2、有理數(shù)的混合運(yùn)算法則:先乘方,再乘除,最后加減;同級(jí)運(yùn)算,從左到右進(jìn)行;如有括號(hào),先做括號(hào)內(nèi)的運(yùn)算,按小括號(hào)、中括號(hào)、大括號(hào)依次進(jìn)行。
3、把一個(gè)大于10的數(shù)表示成a×10的n次方的形式,使用的就是科學(xué)計(jì)數(shù)法,注意a的范圍為1≤a<10。
4、從一個(gè)數(shù)的左邊第一個(gè)非0數(shù)字起,到末位數(shù)字止,所有數(shù)字都是這個(gè)數(shù)的有效數(shù)字。四舍五入遵從精確到哪一位就從這一位的下一位開(kāi)始,而不是從數(shù)字的末尾往前四舍五入。比如:3.5449精確到0.01就是3.54而不是3.55.
第二章整式的加減
2.1整式
1、單項(xiàng)式:由數(shù)字和字母乘積組成的式子。系數(shù),單項(xiàng)式的次數(shù).單項(xiàng)式指的是數(shù)或字母的積的代數(shù)式.單獨(dú)一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式.因此,判斷代數(shù)式是否是單項(xiàng)式,關(guān)鍵要看代數(shù)式中數(shù)與字母是否是乘積關(guān)系,即分母中不含有字母,若式子中含有加、減運(yùn)算關(guān)系,其也不是單項(xiàng)式.
2、單項(xiàng)式的系數(shù):是指單項(xiàng)式中的數(shù)字因數(shù);
3、單項(xiàng)數(shù)的次數(shù):是指單項(xiàng)式中所有字母的指數(shù)的和.
4、多項(xiàng)式:幾個(gè)單項(xiàng)式的和。判斷代數(shù)式是否是多項(xiàng)式,關(guān)鍵要看代數(shù)式中的每一項(xiàng)是否是單項(xiàng)式.每個(gè)單項(xiàng)式稱(chēng)項(xiàng),常數(shù)項(xiàng),多項(xiàng)式的次數(shù)就是多項(xiàng)式中次數(shù)的次數(shù)。多項(xiàng)式的次數(shù)是指多項(xiàng)式里次數(shù)項(xiàng)的次數(shù),這里ab是次數(shù)項(xiàng),其次數(shù)是6;多項(xiàng)式的項(xiàng)是指在多項(xiàng)式中,每一個(gè)單項(xiàng)式.特別注意多項(xiàng)式的項(xiàng)包括它前面的性質(zhì)符號(hào).
5、它們都是用字母表示數(shù)或列式表示數(shù)量關(guān)系。注意單項(xiàng)式和多項(xiàng)式的每一項(xiàng)都包括它前面的符號(hào)。
6、單項(xiàng)式和多項(xiàng)式統(tǒng)稱(chēng)為整式。33
2.2整式的加減
1、同類(lèi)項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)。與字母前面的系數(shù)(≠0)無(wú)關(guān)。
2、同類(lèi)項(xiàng)必須同時(shí)滿(mǎn)足兩個(gè)條件:(1)所含字母相同;(2)相同字母的次數(shù)相同,二者缺一不可.同類(lèi)項(xiàng)與系數(shù)大小、字母的排列順序無(wú)關(guān)
3、合并同類(lèi)項(xiàng):把多項(xiàng)式中的同類(lèi)項(xiàng)合并成一項(xiàng)??梢赃\(yùn)用交換律,結(jié)合律和分配律。
4、合并同類(lèi)項(xiàng)法則:合并同類(lèi)項(xiàng)后,所得項(xiàng)的系數(shù)是合并前各同類(lèi)項(xiàng)的系數(shù)的和,且字母部分不變;
5、去括號(hào)法則:去括號(hào),看符號(hào):是正號(hào),不變號(hào);是負(fù)號(hào),全變號(hào)。
6、整式加減的一般步驟:
一去、二找、三合
(1)如果遇到括號(hào)按去括號(hào)法則先去括號(hào).(2)結(jié)合同類(lèi)項(xiàng).(3)合并同類(lèi)項(xiàng)
第三章一元一次方程
3.1一元一次方程
1、方程是含有未知數(shù)的等式。
2、方程都只含有一個(gè)未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程。注意:判斷一個(gè)方程是否是一元一次方程要抓住三點(diǎn):
1)未知數(shù)所在的式子是整式(方程是整式方程);
2)化簡(jiǎn)后方程中只含有一個(gè)未知數(shù);
3)經(jīng)整理后方程中未知數(shù)的次數(shù)是1.
3、解方程就是求出使方程中等號(hào)左右兩邊相等的未知數(shù)的值,這個(gè)值就是方程的解。
4、等式的性質(zhì):1)等式兩邊同時(shí)加(或減)同一個(gè)數(shù)(或式子),結(jié)果仍相等;
2)等式兩邊同時(shí)乘同一個(gè)數(shù),或除以同一個(gè)不為0的數(shù),結(jié)果仍相等。
注意:運(yùn)用性質(zhì)時(shí),一定要注意等號(hào)兩邊都要同時(shí)變;運(yùn)用性質(zhì)2時(shí),一定要注意0這個(gè)數(shù).
3.2、3.3解一元一次方程
在實(shí)際解方程的過(guò)程中,以下步驟不一定完全用上,有些步驟還需重復(fù)使用.因此在解方程時(shí)還要注意以下幾點(diǎn):
①去分母:在方程兩邊都乘以各分母的最小公倍數(shù),不要漏乘不含分母的項(xiàng);分子是一個(gè)整體,去分母后應(yīng)加上括號(hào);去分母與分母化整是兩個(gè)概念,不能混淆;
②去括號(hào):遵從先去小括號(hào),再去中括號(hào),最后去大括號(hào);不要漏乘括號(hào)的項(xiàng);不要弄錯(cuò)符號(hào);③移項(xiàng):把含有未知數(shù)的項(xiàng)移到方程的一邊,其他項(xiàng)都移到方程的另一邊(移項(xiàng)要變符號(hào))移項(xiàng)要變號(hào);
④合并同類(lèi)項(xiàng):不要丟項(xiàng),解方程是同解變形,每一步都是一個(gè)方程,不能像計(jì)算或化簡(jiǎn)題那樣寫(xiě)能連等的形式;
⑤系數(shù)化為1::字母及其指數(shù)不變系數(shù)化成1,在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解。不要分子、分母搞顛倒。
3.4實(shí)際問(wèn)題與一元一次方程
一.概念梳理
⑴列一元一次方程解決實(shí)際問(wèn)題的一般步驟是:①審題,特別注意關(guān)鍵的字和詞的意義,弄清相關(guān)
數(shù)量關(guān)系;②設(shè)出未知數(shù)(注意單位);③根據(jù)相等關(guān)系列
出方程;④解這個(gè)方程;⑤檢驗(yàn)并寫(xiě)出答案(包括單位名稱(chēng))。
⑵一些固定模型中的等量關(guān)系及典型例題參照一元一次方程應(yīng)用題專(zhuān)練學(xué)案。
二、思想方法(本單元常用到的數(shù)學(xué)思想方法小結(jié))
⑴建模思想:通過(guò)對(duì)實(shí)際問(wèn)題中的數(shù)量關(guān)系的分析,抽象成數(shù)學(xué)模型,建立一元一次方程的思想.⑵方程思想:用方程解決實(shí)際問(wèn)題的思想就是方程思想.
⑶化歸思想:解一元一次方程的過(guò)程,實(shí)質(zhì)上就是利用去分母、去括號(hào)、移項(xiàng)、合并同類(lèi)項(xiàng)、未知
數(shù)的系數(shù)化為1等各種同解變形,不斷地用新的更簡(jiǎn)單的方程來(lái)代替原來(lái)的方程,最
后逐步把方程轉(zhuǎn)化為x=a的形式.體現(xiàn)了化“未知”為“已知”的化歸思想.
⑷數(shù)形結(jié)合思想:在列方程解決問(wèn)題時(shí),借助于線(xiàn)段示意圖和圖表等來(lái)分析數(shù)量關(guān)系,使問(wèn)題中的
數(shù)量關(guān)系很直觀地展示出來(lái),體現(xiàn)了數(shù)形結(jié)合的優(yōu)越性.
⑸分類(lèi)思想:在解含字母系數(shù)的方程和含絕對(duì)值符號(hào)的方程過(guò)程中往往需要分類(lèi)討論,在解有關(guān)方
案設(shè)計(jì)的實(shí)際問(wèn)題的過(guò)程中往往也要注意分類(lèi)思想在過(guò)程中的運(yùn)用.
三、數(shù)學(xué)思想方法的學(xué)習(xí)
1.解一元一次方程時(shí),要明確每一步過(guò)程都作什么變形,應(yīng)該注意什么問(wèn)題.
2.尋找實(shí)際問(wèn)題的數(shù)量關(guān)系時(shí),要善于借助直觀分析法,如表格法,直線(xiàn)分析法和圖示分析法等.
3.列方程(\)解應(yīng)用題的檢驗(yàn)包括兩個(gè)方面:⑴檢驗(yàn)求得的結(jié)果是不是方程的解;
⑵是要判斷方程的解是否符合題目中的實(shí)際意義.
四、一元一次方程典型例題
m3例1.已知方程2x-+3x=5是一元一次方程,則.
解:由一元一次方程的定義可知m-3=1,解得m=4.或m-3=0,解得m=3
所以m=4或m=3
警示:很多同學(xué)做到這種題型時(shí)就想到指數(shù)是1,從而寫(xiě)成m=1,這里一定要注意x的指數(shù)是(m
-3).
2例2.已知x??2是方程ax-(2a-3)x+5=0的解,求a的值.
解:∵x=-2是方程ax-(2a-3)x+5=0的解
∴將x=-2代入方程,
2得a?(-2)-(2a-3)?(-2)+5=02
化簡(jiǎn),得4a+4a-6+5=0
∴a=18
點(diǎn)撥:要想解決這道題目,應(yīng)該從方程的解的定義入手,方程的解就是使方程左右兩邊值相等的未知數(shù)的值,這樣把x=-2代入方程,然后再解關(guān)于a的一元一次方程就可以了.
例3.解方程2(x+1)-3(4x-3)=9(1-x).
解:去括號(hào),得2x+2-12x+9=9-9x,
移項(xiàng),得2+9-9=12x-2x-9x.
合并同類(lèi)項(xiàng),得2=x,即x=2.
點(diǎn)撥:此題的一般解法是去括號(hào)后將所有的未知項(xiàng)移到方程的左邊,已知項(xiàng)移到方程的右邊,其實(shí),我們?cè)谌ダㄌ?hào)后發(fā)現(xiàn)所有的未知項(xiàng)移到方程的左邊合并同類(lèi)項(xiàng)后系數(shù)不為正,為了減少計(jì)算的難度,我們可以根據(jù)等式的對(duì)稱(chēng)性,把所有的未知項(xiàng)移到右邊去,已知項(xiàng)移到方程的左邊,最后再寫(xiě)成x=a的形式.
例4.解方程
解析:方程兩邊乘以8,再移項(xiàng)合并同類(lèi)項(xiàng),得同樣,方程兩邊乘以6,再移項(xiàng)合并同類(lèi)項(xiàng),得
方程兩邊乘以4,再移項(xiàng)合并同類(lèi)項(xiàng),得x?1?12
方程兩邊乘以2,再移項(xiàng)合并同類(lèi)項(xiàng),得x=3.
說(shuō)明:解方程時(shí),遇到多重括號(hào),一般的方法是從里往外或從外往里運(yùn)用乘法的分配律逐層去特號(hào),而本題最簡(jiǎn)捷的方法卻不是這樣,是通過(guò)方程兩邊分別乘以一個(gè)數(shù),達(dá)到去分母和去括號(hào)的目的。
例5.解方程
解析:方程可以化為
去括號(hào)移項(xiàng)合并同類(lèi)項(xiàng),得-7x=11,所以x=?11.7
說(shuō)明:一見(jiàn)到此方程,許多同學(xué)立即想到老師介紹的方法,那就是把分母化成整數(shù),即各分?jǐn)?shù)分子分母都乘以10,再設(shè)法去分母,其實(shí),仔細(xì)觀察這個(gè)方程,我們可以將分母化成整數(shù)與去分母兩步一步到位,第一個(gè)分?jǐn)?shù)分子分母都乘以2,第二個(gè)分?jǐn)?shù)分子分母都乘以5,第三個(gè)分?jǐn)?shù)分子分母都乘以10.
例6.解方程
就能很快得到答案:x=3.
3,12=3×4,知識(shí)鏈接:此題如果直接去分母,或者通分,數(shù)字較大,運(yùn)算煩瑣,發(fā)現(xiàn)分母6=2×
20=4×5,30=5×6,聯(lián)系到我們小學(xué)曾做過(guò)這樣的分式化簡(jiǎn)題,故采用拆項(xiàng)法解之比較簡(jiǎn)便.
例7.參加某保險(xiǎn)公司的醫(yī)療保險(xiǎn),住院治療的病人可享受分段報(bào)銷(xiāo),?保險(xiǎn)公司制度的報(bào)銷(xiāo)細(xì)
則如下表,某人今年住院治療后得到保險(xiǎn)公司報(bào)銷(xiāo)的金額是1260元,那么此人的實(shí)際醫(yī)療費(fèi)是()
A.2600元解析:設(shè)此人的實(shí)際醫(yī)療費(fèi)為x元,根據(jù)題意列方程,得
500×0+500×60%+(x-500-500)×80%=1260.
解之,得x=2200,即此人的實(shí)際醫(yī)療費(fèi)是2200元.故選B.
點(diǎn)撥:解答本題首先要弄清題意,讀懂圖表,從中應(yīng)理解醫(yī)療費(fèi)是分段計(jì)算累加求和而得的.因
60%<1260<2000×80%,所以可知判斷此人的醫(yī)療費(fèi)用應(yīng)按第一檔至第三檔累加計(jì)算.為500×
例8.我市某縣城為鼓勵(lì)居民節(jié)約用水,對(duì)自來(lái)水用戶(hù)按分段計(jì)費(fèi)方式收取水費(fèi):若每月用水不超過(guò)7立方米,則按每立方米1元收費(fèi);若每月用水超過(guò)7立方米,則超過(guò)部分按每立方米2元收費(fèi).如果某戶(hù)居民今年5月繳納了17元水費(fèi),那么這戶(hù)居民今年5月的用水量為_(kāi)_________立方米.
7<17,所以該戶(hù)居民今年5月的用水量超標(biāo).解析:由于1×
1+2(x-7)=17,解得x=12.設(shè)這戶(hù)居民5月的用水量為x立方米,可得方程:7×
所以,這戶(hù)居民5月的用水量為12立方米.
初一數(shù)學(xué)知識(shí)點(diǎn)歸納
正數(shù)和負(fù)數(shù)
⒈正數(shù)和負(fù)數(shù)的概念
負(fù)數(shù):比0小的數(shù)正數(shù):比0大的數(shù)0既不是正數(shù),也不是負(fù)數(shù)
注意:①字母a可以表示任意數(shù),當(dāng)a表示正數(shù)時(shí),-a是負(fù)數(shù);當(dāng)a表示負(fù)數(shù)時(shí),-a是正數(shù);當(dāng)a表示0時(shí),-a仍是0。(如果出判斷題為:帶正號(hào)的數(shù)是正數(shù),帶負(fù)號(hào)的數(shù)是負(fù)數(shù),這種說(shuō)法是錯(cuò)誤的,例如+a,-a就不能做出簡(jiǎn)單判斷)
②正數(shù)有時(shí)也可以在前面加“+”,有時(shí)“+”省略不寫(xiě)。所以省略“+”的正數(shù)的符號(hào)是正號(hào)。
2.具有相反意義的量
若正數(shù)表示某種意義的量,則負(fù)數(shù)可以表示具有與該正數(shù)相反意義的量,比如:
零上8℃表示為:+8℃;零下8℃表示為:-8℃
3.0表示的意義
⑴0表示“沒(méi)有”,如教室里有0個(gè)人,就是說(shuō)教室里沒(méi)有人;
⑵0是正數(shù)和負(fù)數(shù)的分界線(xiàn),0既不是正數(shù),也不是負(fù)數(shù)。如:
(3)0表示一個(gè)確切的量。如:0℃以及有些題目中的基準(zhǔn),比如以海平面為基準(zhǔn),則0米就表示海平面。
有理數(shù)
1.有理數(shù)的概念
⑴正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱(chēng)為整數(shù)(0和正整數(shù)統(tǒng)稱(chēng)為自然數(shù))
⑵正分?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱(chēng)為分?jǐn)?shù)
⑶正整數(shù),0,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù)都可以寫(xiě)成分?jǐn)?shù)的形式,這樣的數(shù)稱(chēng)為有理數(shù)。
理解:只有能化成分?jǐn)?shù)的數(shù)才是有理數(shù)。①π是無(wú)限不循環(huán)小數(shù),不能寫(xiě)成分?jǐn)?shù)形式,不是有理數(shù)。②有限小數(shù)和無(wú)限循環(huán)小數(shù)都可化成分?jǐn)?shù),都是有理數(shù)。3,整數(shù)也能化成分?jǐn)?shù),也是有理數(shù)
注意:引入負(fù)數(shù)以后,奇數(shù)和偶數(shù)的范圍也擴(kuò)大了,像-2,-4,-6,-8?也是偶數(shù),-1,-3,-5?也是奇數(shù)。
2.有理數(shù)的分類(lèi)
⑴按有理數(shù)的意義分類(lèi)⑵按正、負(fù)來(lái)分正整數(shù)
整數(shù)0正有理數(shù)正分?jǐn)?shù)
有理數(shù)有理數(shù)0(0不能忽視)
負(fù)整數(shù)
分?jǐn)?shù)負(fù)有理數(shù)負(fù)分?jǐn)?shù)
總結(jié):①正整數(shù)、0統(tǒng)稱(chēng)為非負(fù)整數(shù)(也叫自然數(shù))
②負(fù)整數(shù)、0統(tǒng)稱(chēng)為非正整數(shù)
③正有理數(shù)、0統(tǒng)稱(chēng)為非負(fù)有理數(shù)
④負(fù)有理數(shù)、0統(tǒng)稱(chēng)為非正有理數(shù)
數(shù)軸
⒈數(shù)軸的概念
規(guī)定了原點(diǎn),正方向,單位長(zhǎng)度的直線(xiàn)叫做數(shù)軸。
注意:⑴數(shù)軸是一條向兩端無(wú)限延伸的直線(xiàn);⑵原點(diǎn)、正方向、單位長(zhǎng)度是數(shù)軸的三要素,三者缺一不
可;⑶同一數(shù)軸上的單位長(zhǎng)度要統(tǒng)一;⑷數(shù)軸的三要素都是根據(jù)實(shí)際需要規(guī)定的。
2.數(shù)軸上的點(diǎn)與有理數(shù)的關(guān)系
⑴所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)來(lái)表示,正有理數(shù)可用原點(diǎn)右邊的點(diǎn)表示,負(fù)有理數(shù)可用原點(diǎn)左邊的點(diǎn)表示,0用原點(diǎn)表示。
⑵所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)表示出來(lái),但數(shù)軸上的點(diǎn)不都表示有理數(shù),也就是說(shuō),有理數(shù)與數(shù)軸上的點(diǎn)不是一一對(duì)應(yīng)關(guān)系。(如,數(shù)軸上的點(diǎn)π不是有理數(shù))
3.利用數(shù)軸表示兩數(shù)大小
⑴在數(shù)軸上數(shù)的大小比較,右邊的數(shù)總比左邊的數(shù)大;
⑵正數(shù)都大于0,負(fù)數(shù)都小于0,正數(shù)大于負(fù)數(shù);
⑶兩個(gè)負(fù)數(shù)比較,距離原點(diǎn)遠(yuǎn)的數(shù)比距離原點(diǎn)近的數(shù)小。
4.數(shù)軸上特殊的(小)數(shù)
⑴最小的自然數(shù)是0,無(wú)的自然數(shù);
⑵最小的正整數(shù)是1,無(wú)的正整數(shù);
⑶的負(fù)整數(shù)是-1,無(wú)最小的負(fù)整數(shù)
5.a可以表示什么數(shù)
⑴a>0表示a是正數(shù);反之,a是正數(shù),則a>0;
⑵a<0表示a是負(fù)數(shù);反之,a是負(fù)數(shù),則a<0
⑶a=0表示a是0;反之,a是0,,則a=0
相反數(shù)
⒈相反數(shù)
只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),其中一個(gè)是另一個(gè)的相反數(shù),0的相反數(shù)是0。
注意:⑴相反數(shù)是成對(duì)出現(xiàn)的;⑵相反數(shù)只有符號(hào)不同,若一個(gè)為正,則另一個(gè)為負(fù);
⑶0的相反數(shù)是它本身;相反數(shù)為本身的數(shù)是0。
2.相反數(shù)的性質(zhì)與判定
⑴任何數(shù)都有相反數(shù),且只有一個(gè);
⑵0的相反數(shù)是0;
⑶互為相反數(shù)的兩數(shù)和為0,和為0的兩數(shù)互為相反數(shù),即a,b互為相反數(shù),則a+b=0
3.相反數(shù)的幾何意義
在數(shù)軸上與原點(diǎn)距離相等的兩點(diǎn)表示的兩個(gè)數(shù),是互為相反數(shù);互為相反數(shù)的兩個(gè)數(shù),在數(shù)軸上的對(duì)應(yīng)點(diǎn)(0除外)在原點(diǎn)兩旁,并且與原點(diǎn)的距離相等。0的相反數(shù)對(duì)應(yīng)原點(diǎn);原點(diǎn)表示0的相反數(shù)。說(shuō)明:在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng)。
4.相反數(shù)的求法
⑴求一個(gè)數(shù)的相反數(shù),只要在它的前面添上負(fù)號(hào)“-”即可求得(如:5的相反數(shù)是-5);
⑵求多個(gè)數(shù)的和或差的相反數(shù)時(shí),要用括號(hào)括起來(lái)再添“-”,然后化簡(jiǎn)(如;5a+b的相反數(shù)是-(5a+b)?;?jiǎn)得-5a-b);
⑶求前面帶“-”的單個(gè)數(shù),也應(yīng)先用括號(hào)括起來(lái)再添“-”,然后化簡(jiǎn)(如:-5的相反數(shù)是-(-5),化
簡(jiǎn)得5)
5.相反數(shù)的表示方法
⑴一般地,數(shù)a的相反數(shù)是-a,其中a是任意有理數(shù),可以是正數(shù)、負(fù)數(shù)或0。
當(dāng)a>0時(shí),-a<0(正數(shù)的相反數(shù)是負(fù)數(shù))
當(dāng)a<0時(shí),-a>0(負(fù)數(shù)的相反數(shù)是正數(shù))
當(dāng)a=0時(shí),-a=0,(0的相反數(shù)是0)
絕對(duì)值
⒈絕對(duì)值的幾何定義
一般地,數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做a的絕對(duì)值,記作|a|。
2.絕對(duì)值的代數(shù)定義
⑴一個(gè)正數(shù)的絕對(duì)值是它本身;⑵一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù);⑶0的絕對(duì)值是0.
可用字母表示為:
①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。
可歸納為①:a≥0,<═>|a|=a(非負(fù)數(shù)的絕對(duì)值等于本身;絕對(duì)值等于本身的數(shù)是非負(fù)數(shù)。)②a≤0,<═>|a|=-a(非正數(shù)的絕對(duì)值等于其相反數(shù);絕對(duì)值等于其相反數(shù)的數(shù)是非正數(shù)。)經(jīng)典考題
如數(shù)軸所示,化簡(jiǎn)下列各數(shù)
|a|,|b|,|c|,|a-b|,|a-c|,|b+c|
解:由題知道,因?yàn)閍>0,b<0,c<0,a-b>0,a-c>0,b+c<0,
所以|a|=a,|b|=-b,|c|=-c,|a-b|=a-b,|a-c|=a-c,|b+c|=-(b+c)=-b-c
3.絕對(duì)值的性質(zhì)
任何一個(gè)有理數(shù)的絕對(duì)值都是非負(fù)數(shù),也就是說(shuō)絕對(duì)值具有非負(fù)性。所以,a取任何有理數(shù),都有|a|≥0。即⑴0的絕對(duì)值是0;絕對(duì)值是0的數(shù)是0.即:a=0<═>|a|=0;
⑵一個(gè)數(shù)的絕對(duì)值是非負(fù)數(shù),絕對(duì)值最小的數(shù)是0.即:|a|≥0;
⑶任何數(shù)的絕對(duì)值都不小于原數(shù)。即:|a|≥a;
⑷絕對(duì)值是相同正數(shù)的數(shù)有兩個(gè),它們互為相反數(shù)。即:若|x|=a(a>0),則x=±a;
⑸互為相反數(shù)的兩數(shù)的絕對(duì)值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|;
⑹絕對(duì)值相等的兩數(shù)相等或互為相反數(shù)。即:|a|=|b|,則a=b或a=-b;
⑺若幾個(gè)數(shù)的絕對(duì)值的和等于0,則這幾個(gè)數(shù)就同時(shí)為0。即|a|+|b|=0,則a=0且b=0。
(非負(fù)數(shù)的常用性質(zhì):若幾個(gè)非負(fù)數(shù)的和為0,則有且只有這幾個(gè)非負(fù)數(shù)同時(shí)為0)
經(jīng)典考題
已知|a+3|+|2b-2|+|c-1|=0,求a+b+c的值
解:因?yàn)閨a+3|≥0,|2b-2|≥0,|c-1|≥0,且|a+3|+|2b-2|+|c-1|=0
所以|a+3|=0,|2b-2|=0,|c-1|=0
即a=-3,b=1,c=1
所以a+b+c=-3+1+1=-1
4.有理數(shù)大小的比較
⑴利用數(shù)軸比較兩個(gè)數(shù)的大?。簲?shù)軸上的兩個(gè)數(shù)相比較,左邊的總比右邊的小;
⑵利用絕對(duì)值比較兩個(gè)負(fù)數(shù)的大?。簝蓚€(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小;異號(hào)兩數(shù)比較大小,正數(shù)
大于負(fù)數(shù)。
5.絕對(duì)值的化簡(jiǎn)
①當(dāng)a≥0時(shí),|a|=a;②當(dāng)a≤0時(shí),|a|=-a
6.已知一個(gè)數(shù)的絕對(duì)值,求這個(gè)數(shù)
一個(gè)數(shù)a的絕對(duì)值就是數(shù)軸上表示數(shù)a的點(diǎn)到原點(diǎn)的距離,一般地,絕對(duì)值為同一個(gè)正數(shù)的有理數(shù)有兩個(gè),它們互為相反數(shù),絕對(duì)值為0的數(shù)是0,沒(méi)有絕對(duì)值為負(fù)數(shù)的數(shù)。如:|a|=5,則a=土5
有理數(shù)的加減法
1.有理數(shù)的加法法則
⑴同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;
⑵絕對(duì)值不相等的異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;⑶互為相反數(shù)的兩數(shù)相加,和為零;
⑷一個(gè)數(shù)與零相加,仍得這個(gè)數(shù)。
2.有理數(shù)加法的運(yùn)算律
⑴加法交換律:a+b=b+a
⑵加法結(jié)合律:(a+b)+c=a+(b+c)
在運(yùn)用運(yùn)算律時(shí),一定要根據(jù)需要靈活運(yùn)用,以達(dá)到化簡(jiǎn)的目的,通常有下列規(guī)律:
①互為相反數(shù)的兩個(gè)數(shù)先相加——“相反數(shù)結(jié)合法”;
②符號(hào)相同的兩個(gè)數(shù)先相加——“同號(hào)結(jié)合法”;
③分母相同的數(shù)先相加——“同分母結(jié)合法”;
④幾個(gè)數(shù)相加得到整數(shù),先相加——“湊整法”;
⑤整數(shù)與整數(shù)、小數(shù)與小數(shù)相加——“同形結(jié)合法”。
3.加法性質(zhì)
一個(gè)數(shù)加正數(shù)后的和比原數(shù)大;加負(fù)數(shù)后的和比原數(shù)小;加0后的和等于原數(shù)。即:
⑴當(dāng)b>0時(shí),a+b>a⑵當(dāng)b<0時(shí),a+b
4.有理數(shù)減法法則
減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。用字母表示為:a-b=a+(-b)。
5.有理數(shù)加減法統(tǒng)一成加法的意義
在有理數(shù)加減法混合運(yùn)算中,根據(jù)有理數(shù)減法法則,可以將減法轉(zhuǎn)化成加法后,再按照加法法則進(jìn)行計(jì)算。
在和式里,通常把各個(gè)加數(shù)的括號(hào)和它前面的加號(hào)省略不寫(xiě),寫(xiě)成省略加號(hào)的和的形式。如:(-8)+(-7)+(-6)+(+5)=-8-7-6+5.
和式的讀法:①按這個(gè)式子表示的意義讀作“負(fù)8、負(fù)7、負(fù)6、正5的和”
②按運(yùn)算意義讀作“負(fù)8減7減6加5”
6.有理數(shù)加減混合運(yùn)算中運(yùn)用結(jié)合律時(shí)的一些技巧:
Ⅰ.把符號(hào)相同的加數(shù)相結(jié)合(同號(hào)結(jié)合法)
(-33)-(-18)+(-15)-(+1)+(+23)
原式=-33+(+18)+(-15)+(-1)+(+23)(將減法轉(zhuǎn)換成加法)
=-33+18-15-1+23(省略加號(hào)和括號(hào))
=(-33-15-1)+(18+23)(把符號(hào)相同的加數(shù)相結(jié)合)
=-49+41(運(yùn)用加法法則一進(jìn)行運(yùn)算)
=-8(運(yùn)用加法法則二進(jìn)行運(yùn)算)
Ⅱ.把和為整數(shù)的加數(shù)相結(jié)合(湊整法)
(+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8)
原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8)(將減法轉(zhuǎn)換成加法)
=6.6-5.2+3.8-2.6-4.8(省略加號(hào)和括號(hào))
=(6.6-2.6)+(-5.2-4.8)+3.8(把和為整數(shù)的加數(shù)相結(jié)合)
=4-10+3.8(運(yùn)用加法法則進(jìn)行運(yùn)算)
=7.8-10(把符號(hào)相同的加數(shù)相結(jié)合,并進(jìn)行運(yùn)算)=-2.2(得出結(jié)論)
Ⅲ.把分母相同或便于通分的加數(shù)相結(jié)合(同分母結(jié)合法)313217-+-+-524528
321137原式=(--)+(-+)+(+-)552248
1=-1+0-8
1=-18-
Ⅳ.既有小數(shù)又有分?jǐn)?shù)的運(yùn)算要統(tǒng)一后再結(jié)合(先統(tǒng)一后結(jié)合)312)+(-3)-(-10)-(+1.25)483
13121原式=(+)+(+3)+(-3)+(+10)+(-1)84834
13121=+3-3+10-184834
31112=(3-1)+(-3)+1044883
12=2-3+1023
1=-3+136
1=106(+0.125)-(-3
Ⅴ.把帶分?jǐn)?shù)拆分后再結(jié)合(先拆分后結(jié)合)-31617+10-12+45112215
2022年初一數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)歸納相關(guān)文章:
★ 初一數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)歸納
★ 初一數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)大全
★ 初一數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)
★ 七年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)歸納
★ 初一數(shù)學(xué)上冊(cè)重點(diǎn)知識(shí)整理
★ 七年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)匯總
★ 初一上冊(cè)數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)歸納總結(jié)
★ 初一數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)匯總歸納