高中做數(shù)學題的技巧
數(shù)學是高中學習的關鍵科目之一,而高效高質的數(shù)學學習方法是學好數(shù)學的重要手段。那么接下來給大家分享一些關于高中做數(shù)學題的技巧,希望對大家有所幫助。
高中做數(shù)學題的技巧
審題技巧
審題是正確解題的關鍵,是對題目進行分析、綜合、尋求解題思路和方法的過程,審題過程包括明確條件與目標、分析條件與目標的聯(lián)系、確定解題思路與方法三部分。(1)條件的分析,一是找出題目中明確告訴的已知條件,二是發(fā)現(xiàn)題目的隱含條件并加以揭示。目標的分析,主要是明確要求什么或要證明什么;把復雜的目標轉化為簡單的目標;
把抽象目標轉化為具體的目標;把不易把握的目標轉化為可把握的目標。(2)分析條件與目標的聯(lián)系。每個數(shù)學問題都是由若干條件與目標組成的。解題者在閱讀題目的基礎上,需要找一找從條件到目標缺少些什么?或從條件順推,或從目標分析,或畫出關聯(lián)的草圖并把條件與目標標在圖上,找出它們的內在聯(lián)系,以順利實現(xiàn)解題的目標。(3)確定解題思路。一個題目的條件與目標之間存在著一系列必然的聯(lián)系,這些聯(lián)系是由條件通向目標的橋梁。用哪些聯(lián)系解題,需要根據(jù)這些聯(lián)系所遵循的數(shù)學原理確定。解題的實質就是分析這些聯(lián)系與哪個數(shù)學原理相匹配。有些題目,這種聯(lián)系十分隱蔽,必須經(jīng)過認真分析才能加以揭示;有些題目的匹配關系有多種,而這正是一個問題有多種解法的原因。
會做的題保證做對
這一點很重要,實踐中發(fā)現(xiàn),考試我們會做的題丟分率是百分之十,也就是說由于大意每次考試大家都要丟掉這么多的分,怎么將你的解題策略轉化為得分點,雖然解題思路正確甚至很巧妙,但是最后可能做不對,這一點往往被一些考生所忽視,但是由于不善于把圖形語言變成自己理解的語言,因此卷面上出現(xiàn)大量會又做不對的情況,我們自己的估分和得分相差甚遠。如立體幾何論證中的跳步,大總分人會丟掉三分之一以上的分數(shù),代數(shù)論證中,得分更是少 的可憐。所心我們要邊做邊檢查解題思路正確與否,做完后認真核對。不僅把題目做完,更要保證準確率,會做的一定要保證做對,要能得到分。
還有好多同學把本來做對的題改錯了,這就得不償失了。雖然這種情況是偶然的,但肯定是你在做的過程當中對某一個題目產(chǎn)生懷疑,又沒太大的把握。遇到有疑問的題,我建議不要著急,我們做題的第一感覺是非常重要的,如果基本思路上沒有大的錯誤,那么你憑著這個思路題做下去,仔細回憶有關的知識點。有時還會出現(xiàn)運算的錯誤,可能是由于緊張或粗心,平時要更加重視此類問題,又要養(yǎng)成良好的習慣,比如做一步回頭看看,或者做兩步回頭看看,邊解題邊檢查。不要總是猶豫不覺,做完了就要堅定信心。不要變成精神負擔。
高中數(shù)學解題技巧
認真分析問題,找解題準切入點
由于數(shù)學問題紛繁復雜,學生容易受定勢思維的影響,這樣就會響解題思路造成很大的影響。為此,這時教師要給予學生正確指導,幫助學生進行思路的調整,對題目進行重新認真的分析,將切入點找準后,問題就能游刃而解了。例如:如AB=DC,AC=DB。求證:∠A=∠D。
此題是一道比較經(jīng)典的證明全等的題型,主要是對學生對已知條件整合能力和觀察識圖能力的鍛煉。然而,從圖形的直觀角度來證明∠AOC=∠DOB,這樣的思路只會落入題目所設下的陷阱。為此,在對此題的審題時,教師要引導學生注意將題目已知的兩個條件充分結合起來考慮,提醒學生可以適當添加一定的輔助線。
發(fā)揮想象力,借助面積出奇制勝
面積問題是數(shù)學中常出現(xiàn)的問題,在面積定義及相關規(guī)律中,蘊含著深刻的數(shù)學思想,如果學生能充分了解其中的韻味,能夠熟練的掌握其中的數(shù)學論證思維,就有可能在其他數(shù)學問題中借助面積,出奇制勝順利實現(xiàn)解題。由于幾何圖形的面積與線段、角、弧等有密切的聯(lián)系,所以用面積法不但可證各種幾何圖形面積的等量關系,還可證某些線段相等、線段不等、角的相等以及比例式等多種類型的幾何題。
例1 若E、F分別是矩形ABCD邊AB、CD的中點,且矩形EFDA與矩形ABCD相似,則矩形ABCD的寬與長之比為() (A) 1∶2(B) 2∶1(C) 1∶2(D) 2∶1由上題已知信息可知,矩形ABCD的寬AD與AB的比,就是矩形EFDA與矩形ABCD的相似比。解:設矩形EFDA與矩形ABCD的相似比為k。因為E、F分別是矩形ABCD的中點所以S矩形ABCD=2S矩形EFDA所以S矩形EFDAS矩形ABCD=k2=12。所以k=1∶2。即矩形ABCD的寬與長之比為1∶2;故選(C)。此題我們利用了相似多邊形面積的比等于相似比平方,這一性質,巧妙解決相似矩形中的長與寬比的問題。事實上,借助面積,形成解題思路的過程,就是學生思維轉換的過程。
高中數(shù)學具體解題技巧
(一)建設數(shù)學基礎知識網(wǎng)絡體系
數(shù)學解題技巧的本質在于將課本概念、定理、公式等基本知識進行深入的理解整合,讓學生在主動參與、深入思考的基礎上,形成系統(tǒng)的數(shù)學知識網(wǎng)絡體系.使學生建立基礎的知識網(wǎng)絡體系,掌握題目內外聯(lián)系,構建知識網(wǎng)絡,在主干思路的基礎上,將零碎知識鑄成一個系統(tǒng)的知識網(wǎng),更好地抓住難點,解決疑點,做到不重不漏.
(二)落實答題細節(jié),穩(wěn)抓數(shù)學分數(shù)
學習高中數(shù)學,日常的練習與總結固然重要,但是也要注意數(shù)學題目中存在的細微得分點,這就要求學生注重題目推理的完整性.尤其是在進行“幾何圖形”證明與推理的過程中,要特別注意數(shù)學符號的運用,數(shù)學大題解題步驟的書寫,以及字跡的工整度.還有在多種方法解答函數(shù)時,要特別注意因式分解法中,分解項的符號問題以及系數(shù)是否為“1”的細小知識點.只有將數(shù)學題目落實到細微之處,才會取得意想不到的學習成效.
(三)提高整體運算能力
對于高中數(shù)學來說,良好的運算能力是提高數(shù)學答題效率的關鍵.進入高中以后,由于學習時間緊、學習任務重以及數(shù)學知識的復雜性增強,教師進行授課時往往傾向于把教學重點放在難點的解答上,而不注意培養(yǎng)學生的運算能力,學生則容易好高騖遠、眼高手低,往往在最簡單的題目答案上丟失分數(shù),這也是學生數(shù)學成績得不到提高的。實際上,運算是每一名學生都應該培養(yǎng)的一項基本數(shù)學能力,運算的熟練度、準確性、高效性對學生數(shù)學成績的提高起到了至關重要的作用.