2017大慶中考數(shù)學模擬考題及答案
學生需要多掌握中考數(shù)學模擬試題并多去練習,只要認真練習就能提高自己的成績,以下是小編精心整理的2017大慶中考數(shù)學模擬試題及答案,希望能幫到大家!
2017大慶中考數(shù)學模擬試題
一、選擇題(本大題共10小題,每小題3分,共30分.在每小題所給出的四個選項中,只有一項是正確的,請用2B鉛筆把答題卡上相應的選項標號涂黑
1.-3的倒數(shù)是 ( )
A.-13 B.13 C.±3 D.3
2.函數(shù)y=2-x中自變量x的取值范圍是 ( )
A.x>2 B.x≤2 C. x≥2 D.x≠2
3.五多邊形的內角和為 ( )
A.180° B.360° C.540° D.720°
4.下列汽車標志中,是中心對稱圖形的是 ( )
A. B. C. D.
5.如圖,直線m∥n,∠1=70°,∠2=30°,則∠A等于 ( )
A.30° B.35° C.40° D.50°
6.若一組數(shù)據(jù)2、4、6、8、x的方差比另一組數(shù)據(jù)5、7、9、11、13的方差大,則 x 的值可以為 ( )
A.12 B.10 C.2 D.0
7.已知圓錐的母線長是12,它的側面展開圖的圓心角是120°,則它的底面圓的直徑為
A.2 B.4 C.6 D.8 ( )
8.過正方體中有公共頂點的三條棱的中點切出一個平面,形成如圖幾何體,其正確展開圖為( )
A. B. C. D.
9.對于代數(shù)式x2-10x+24,下列說法:①它是二次三項式; ②該代數(shù)式的值可能等于2017;③分解因式的結果是(x-4)(x-6);④該代數(shù)式的值可能小于-1.其中正確的有
A. 1個 B.2個 C.3 個 D.4個 ( )
10.在△ABC中,∠B=45°,AC=4,則△ABC面積的最大值為 ( )A.42 B.42+4 C.8 D.82+8
二、填空題(本大題共8小題,每小題2分,共16分.不需寫出解答過程,只需把答案直接填寫在答題卡上相應的位置)
11.4的平方根為 .
12.人體中紅細胞的直徑約為0.000 0077m,用科學記數(shù)法表示這個數(shù)為 m.
13.計算: = .
14.若點A(-1,a)在反比例函數(shù)y=-3x的圖像上,則a的值為 .
15.如圖,AB是⊙O的弦,AC是⊙O的切線,A為切點,BC經(jīng)過圓心O.若∠B=25°,則∠C= .【
16.如圖,菱形ABCD中,對角線AC交BD于O, E是CD的中點,且OE=2,則菱形
ABCD的周長等于 .
型號 A B
單個盒子容量(升) 2 3
單價(元) 5 6
17.一食堂需要購買盒子存放食物,盒子有A、B兩種型號,單個盒子的容量和價格如表格所示.現(xiàn)有15升食物需要存放且要求每個盒子都要裝滿,由于A型號盒子正做促銷活動:購買三個及三個以上可一次性每個返還現(xiàn)金1.5元,則該食堂購買盒子所需的最少費用是 .
18.在△ABC中,AB=42,BC=6,∠B=45°,D為BC邊上一動點,將△ABC沿著過點D的直線折疊使點C落在AB邊上,則CD的取值范圍是 .
三、解答題(本大題共10小題,共84分.請在答題卡指定區(qū)域內作答,解答時應寫出文字說明、證明過程或演算步驟)
19.(本題滿分8分)計算:
(1) ; (2)(x―1)2―(x+1)(x―3).
20.(本題滿分8分)
(1)解方程: ; (2)解不等式組:x+8<4x+1,12x≤8-32x.
21.(本題滿分8分)如圖,△ABC中,AB=AC,點D、E分別在AB、AC邊上,且∠EBC=∠DCB.求證:BE=CD
22.(本題滿分8分)在一次中學生田徑運動會上,根據(jù)參加男子跳高初賽的運動員的成績(單位:m),繪制出如下兩幅統(tǒng)計圖.請根據(jù)相關信息,解答下列問題:
(1)扇形統(tǒng)計圖中,初賽成績?yōu)?.65m所在扇形圖形的圓心角為_ _°;
(2)補全條形統(tǒng)計圖;
(3)這組初賽成績的中位數(shù)是 m;
(4)根據(jù)這組初賽成績確定8人進入復賽,那么初賽成績?yōu)?.60m的運動員楊強能否進入復賽?為什么?
23.(本題滿分8分)若十位上的數(shù)字比個位上的數(shù)字、百位上的數(shù)字都大的三位數(shù)叫做中高數(shù),如796就是一個“中高數(shù)”.若一個三位數(shù)的十位上數(shù)字為7,且從4、5、6、8中隨機選取兩數(shù),與7組成“中高數(shù)”,那么組成“中高數(shù)”的概率是多少?(請用“畫樹狀圖”或“列表”等方法寫出分析過程)
24.(本題滿分8分)如圖,菱形ABCD中,
(1)若半徑為1的⊙O經(jīng)過點A、B、D,且∠A=60°,求此時菱形的邊長;
(2)若點P為AB上一點,把菱形ABCD沿過點P的直線a折疊,使點D落在BC邊上,利用無刻度的直尺和圓規(guī)作出直線a.(保留作圖痕跡,不必說明作法和理由)
25.(本題滿分10分)
“夕陽紅”養(yǎng)老院共有普通床位和高檔床位共500張.已知今年一月份入住普通床位老人300人,入住高檔床位老人90人,共計收費51萬元;今年二月份入住普通床位老人350人,入住高檔床位老人100人,共計收費58萬元.
(1)求普通床位和高檔床位每月收費各多少元?
(2)根據(jù)國家養(yǎng)老政策規(guī)定,為保障普通居民的養(yǎng)老權益,所有實際入住高檔床位數(shù)不得超過普通床位數(shù)的三分之一;另外為扶持養(yǎng)老企業(yè)發(fā)展國家民政局財政對每張入住的床位平均每年都是給予養(yǎng)老院企業(yè)2400元的補貼.經(jīng)測算,該養(yǎng)老院普通床位的運營成本是每月1200元/張,入住率為90%;高檔床位的運營成本是每月2000元/張,入住率為70%.問該養(yǎng)老院應該怎樣安排500張床的普通床位和高檔床位數(shù)量,才能使每月的利潤最大,最大為多少元?(月利潤=月收費-月成本+月補貼)
26.(本題滿分8分)如圖,已知拋物線 (其中 )與x軸交于點A、B(點A在點B的左側),與y軸交于點C,拋物線的對稱軸l與x軸交于點D,且點D恰好在線段BC的垂直平分線上.
(1)求拋物線的關系式;
(2)過點 的線段MN∥y軸,與BC交于點P,與拋物線交于點N.若點E是直線l上一點,且∠BED=∠MNB-∠ACO時,求點E的坐標.
27.(本題滿分10分)如圖,在平面直角坐標系中,直線y=2x+4分別交x軸,y軸于點A,C,點D(m,2)在直線AC上,點B在x軸正半軸上,且OB=3OC.點E是y軸上任意一點記點E為(0,n).
(1)求直線BC的關系式;
(2)連結DE,將線段DE繞點D按順時針旋轉90°得線段DG,作正方形DEFG,是否存在n的值,使正方形DEFG的頂點F落在△ABC的邊上?若存在,求出所有的n值并直接寫出此時正方形DEFG與△ABC重疊部分的面積;若不存在,請說明理由.
28.(本題滿分8分)
在平面直角坐標系xOy中,對于任意三點A,B,C,給出如下定義:
如果矩形的任何一條邊均與某條坐標軸平行,且A,B,C三點都在矩形的內部或邊界上,則稱該矩形為點A,B,C的覆蓋矩形.點A,B,C的所有覆蓋矩形中,面積最小的矩形稱為點A,B,C的最優(yōu)覆蓋矩形.例如,下圖中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是點A,B,C的覆蓋矩形,其中矩形AB3C3D3是點A,B,C的最優(yōu)覆蓋矩形.
(1)已知A( 2,3),B(5,0),C( , 2).
?、佼?時,點A,B,C的最優(yōu)覆蓋矩形的面積為 ;
?、谌酎cA,B,C的最優(yōu)覆蓋矩形的面積為40,則t的值為 ;
(2)已知點D(1,1),點E( , ),其中點E是函數(shù) 的圖像上一點,⊙P是點O,D,E的一個面積最小的最優(yōu)覆蓋矩形的外接圓,求出⊙P的半徑r的取值范圍.
>>>下一頁更多“2017大慶中考數(shù)學模擬試題答案”