淺談智能計(jì)算機(jī)應(yīng)用論文
智能計(jì)算機(jī)輔助教學(xué)系統(tǒng)是以人工智能科學(xué)、認(rèn)知科學(xué)和思維科學(xué)為理論基礎(chǔ)的一種計(jì)算機(jī)輔助教學(xué)的應(yīng)用模式。下面是學(xué)習(xí)啦小編為大家整理的智能計(jì)算機(jī)應(yīng)用論文,供大家參考。
智能計(jì)算機(jī)應(yīng)用論文范文一:論基于人工智能的計(jì)算機(jī)輔助教學(xué)
【摘 要】計(jì)算機(jī)輔助教學(xué)的實(shí)際需要應(yīng)用人工智能技術(shù)及復(fù)雜的程序,如自然語(yǔ)言理解、知識(shí)表示、推理方法等,一些人工智能技術(shù)的特殊應(yīng)用成果,同時(shí)以及理論證明等均被應(yīng)用于計(jì)算機(jī)輔助教學(xué)系統(tǒng),以提高其智能性和實(shí)用性。早期絕大多數(shù)計(jì)算機(jī)輔助教學(xué)技術(shù)被應(yīng)用于建立學(xué)習(xí)模塊。這種方法能控制調(diào)練策略并給出適合學(xué)生的學(xué)習(xí)內(nèi)容。
【關(guān)鍵詞】人工智能 計(jì)算機(jī)輔助教學(xué) 教學(xué)與控制
一、人工智能的定義
人工智能也稱機(jī)器智能,它是計(jì)算機(jī)科學(xué)、控制論、神經(jīng)生理學(xué)、心理學(xué)、語(yǔ)言學(xué)等多種學(xué)科互相滲透而發(fā)展起來(lái)的一門綜合性學(xué)科。從計(jì)算機(jī)應(yīng)用系統(tǒng)角度來(lái)看,人工智能是研究如何制造出智能機(jī)器或智能系統(tǒng),實(shí)現(xiàn)模擬人類智能活動(dòng)的能力,以延伸人們智能的科學(xué)。人工智能是一門交叉科學(xué),逐漸形成一門涉及心理學(xué)、認(rèn)知科學(xué)、思維可循、信息科學(xué)、系統(tǒng)科學(xué)和生物學(xué)科等多學(xué)科的綜合性技術(shù)學(xué)科。
二、計(jì)算輔助教學(xué)體系和現(xiàn)狀
計(jì)算救助教學(xué)是利用多媒體計(jì)算機(jī)的功能與特點(diǎn),利用計(jì)算機(jī)輔助教師完成各個(gè)教學(xué)環(huán)節(jié),并通過(guò)與計(jì)算機(jī)之間的交互活動(dòng),激發(fā)學(xué)生的學(xué)習(xí)積極性和主動(dòng)性,幫助學(xué)生更有效地學(xué)習(xí)。實(shí)用計(jì)算機(jī)輔助教學(xué),有利于認(rèn)識(shí)主體作用的發(fā)揮,它所提供的圖像、聲音、動(dòng)畫等信息由利于學(xué)生知識(shí)的獲得與保持,達(dá)到提高教學(xué)教學(xué)的目的。
目前為止,所實(shí)用的絕大多數(shù)傳統(tǒng)以及理論證明等均被應(yīng)用于計(jì)算機(jī)輔助教學(xué)系統(tǒng),以提高其智能性和實(shí)用性。早期絕大多數(shù)計(jì)算機(jī)輔助教學(xué)將全部教學(xué)信息以編程方式預(yù)置于課件中,這樣的以及理論證明等均被應(yīng)用于計(jì)算機(jī)輔助教學(xué)系統(tǒng),以提高其智能性和實(shí)用性。因此現(xiàn)有的以及理論證明等均被應(yīng)用于計(jì)算機(jī)輔助教學(xué)系統(tǒng),以提高其智能性和實(shí)用性。早期絕大多數(shù)計(jì)算機(jī)輔助教學(xué)系統(tǒng)面臨許多挑戰(zhàn),它主要存在以下幾個(gè)方面的問(wèn)題。
1.計(jì)算機(jī)輔助教學(xué)系統(tǒng)的閉塞性
不具有開(kāi)放性是目前以及理論證明等均被應(yīng)用于計(jì)算機(jī)輔助教學(xué)系統(tǒng),以提高其智能性和實(shí)用性。其弊端在于固定內(nèi)容的局限性使課件的適用面狹窄,而且設(shè)定的運(yùn)行路線使授課缺乏自主性;授課的針對(duì)性不強(qiáng);無(wú)法利用新出現(xiàn)的資源在較高起點(diǎn)上進(jìn)行二次開(kāi)發(fā)。
2.智能性的欠缺
現(xiàn)有的計(jì)算機(jī)智能輔助課件系統(tǒng)不能對(duì)不同何曾度的學(xué)生進(jìn)行有針對(duì)性的教育,學(xué)生的學(xué)習(xí)是被動(dòng)的,不能由系統(tǒng)自動(dòng)提供助學(xué)信息而使學(xué)生有選擇地學(xué)習(xí)。。
3.人機(jī)交互能力較弱
現(xiàn)有計(jì)算機(jī)智能輔助大多以光盤作為信息的載體,將材料中的內(nèi)容以多媒體的形式展現(xiàn)出來(lái),教學(xué)信息是按預(yù)置的教學(xué)流程機(jī)械式地提供給學(xué)者,學(xué)習(xí)者使用計(jì)算機(jī)智能輔助課件學(xué)習(xí)是完全被動(dòng)的。
4.教師與學(xué)生的互動(dòng)在教學(xué)中的缺乏
現(xiàn)有計(jì)算機(jī)智能輔助課件在學(xué)生自學(xué)以及進(jìn)行操作使用時(shí),如何學(xué)習(xí)都是學(xué)生自己的事。教師不能全完了解學(xué)習(xí)者的情況,學(xué)生在蹦到問(wèn)題時(shí)不能向教師求教,師生之間互相封閉,談不上師生互動(dòng),因此課件所起的效果大打折扣。
5.課程特點(diǎn)沒(méi)有突出
各門課程在教學(xué)上有不同的要求,但現(xiàn)有課件對(duì)于這些不同要求完全不予理會(huì)。例如很多課程都要涉及到大量的曲線或曲面,對(duì)有些課程來(lái)說(shuō),將這些曲線或曲面給出了一個(gè)簡(jiǎn)單的展示就足夠了,而有些課程這樣的展示不能達(dá)到教學(xué)目的的要求。
6.教學(xué)計(jì)劃的欠缺
在課件的開(kāi)發(fā)過(guò)程中實(shí)際上離不開(kāi)教學(xué)策略的設(shè)計(jì),但課件的制作者往往并未意識(shí)到這一點(diǎn)。例如:現(xiàn)有的絕大多數(shù)課件都是單一的展播式,這樣的可見(jiàn)制作“精美”,但它不可逆、不能互動(dòng)。實(shí)際上運(yùn)用課件教學(xué)只是手段而不是目的,應(yīng)該在教學(xué)設(shè)計(jì)理論的指導(dǎo)下講求課件的實(shí)效性,著眼點(diǎn)在于學(xué)生學(xué)習(xí)新知識(shí)、掌握新技術(shù)、培養(yǎng)各種能力有幫助,而不是表面上的制作“精美”。
綜上所述,現(xiàn)有的計(jì)算機(jī)智能輔助存在許多問(wèn)題,隨著新技術(shù)的不斷出現(xiàn),這些問(wèn)題將使計(jì)算機(jī)智能輔助越來(lái)越不能適應(yīng)新的要求。因此以智能計(jì)算機(jī)智能輔助為代表的心的計(jì)算機(jī)輔助教學(xué)系統(tǒng)將成為教育技術(shù)上需要不斷探求、努力實(shí)現(xiàn)的發(fā)展方向。 三、智能計(jì)算機(jī)輔助教學(xué)系統(tǒng)
智能計(jì)算機(jī)輔助教學(xué)系統(tǒng)(Intelligent ComputerAided Instruction),簡(jiǎn)稱ICAI。教學(xué)過(guò)程是一個(gè)復(fù)雜的教與學(xué)的思維過(guò)程,它需要教師以專門知識(shí)和經(jīng)驗(yàn)為依據(jù),經(jīng)過(guò)吸取、講解、推理、示例、綜合等多個(gè)步驟才能較好地完成。計(jì)算機(jī)輔助教學(xué)實(shí)際上是一個(gè)由計(jì)算機(jī)系統(tǒng)輔助教師進(jìn)行教學(xué)以及學(xué)生進(jìn)行學(xué)習(xí)并得以實(shí)現(xiàn)的系統(tǒng)。在智能ICAI中,教學(xué)思想、方法、學(xué)習(xí)內(nèi)容可用知識(shí)形式表示,如何解決知識(shí)的形式化表示以及知識(shí)的訪問(wèn)與調(diào)用問(wèn)題,是人工智能的核心技術(shù)之一,也是將ICAI引入教育技術(shù)領(lǐng)域中所要面臨的一個(gè)問(wèn)題。知識(shí)庫(kù)是實(shí)現(xiàn)知識(shí)推理與專家系統(tǒng)的基礎(chǔ),可以用知識(shí)庫(kù)作為智能ICAI的構(gòu)建環(huán)境。在知識(shí)庫(kù)中,教學(xué)內(nèi)容等的有關(guān)知識(shí)可以用事實(shí)與規(guī)則表示,并存儲(chǔ)于知識(shí)庫(kù)內(nèi),教學(xué)與學(xué)習(xí)過(guò)程既是對(duì)知識(shí)庫(kù)中知識(shí)進(jìn)行推理,并最終得出所需結(jié)果的過(guò)程。ICAI系統(tǒng)的一般包括以下幾個(gè)模塊:
1.知識(shí)庫(kù)。知識(shí)庫(kù)是關(guān)于教學(xué)內(nèi)容的模塊,解決“教什么”問(wèn)題。知識(shí)庫(kù)中的教學(xué)內(nèi)容有待于教學(xué)與控制模塊和學(xué)生模塊進(jìn)行選取、調(diào)用。
2.學(xué)生模塊。學(xué)生模塊是用于記錄學(xué)生的學(xué)習(xí)情況,對(duì)學(xué)生學(xué)習(xí)的各個(gè)環(huán)節(jié)信息進(jìn)行搜集,以便系統(tǒng)對(duì)學(xué)生的學(xué)習(xí)情況進(jìn)行自動(dòng)評(píng)估,提出具有針對(duì)性的學(xué)習(xí)建議和個(gè)別化的輔導(dǎo)。學(xué)生模塊描述學(xué)生對(duì)教學(xué)內(nèi)容理解、掌握的程度,系統(tǒng)可以根據(jù)學(xué)生模塊的具體情況調(diào)整教學(xué)策略并提供適當(dāng)?shù)姆答仭?/p>
3.用戶接口模塊。這是系統(tǒng)與用戶交流的界面。整個(gè)系統(tǒng)依靠用戶接口模塊把教學(xué)內(nèi)容呈現(xiàn)給用戶、接受用戶輸入的信息、并向用戶提供反饋。
4.教學(xué)與控制模塊。這是教學(xué)過(guò)程與整個(gè)系統(tǒng)的控制模塊,涉及到“如何教”的問(wèn)題。它具有領(lǐng)域知識(shí)、教學(xué)策略和人機(jī)對(duì)話等方面的知識(shí)。根據(jù)學(xué)生模型提供的學(xué)生學(xué)習(xí)情況,通過(guò)智能系統(tǒng)的搜索與推理,得出智能化的教學(xué)方法與教學(xué)策略,能夠較科學(xué)地評(píng)估學(xué)生的學(xué)習(xí)水平,可以通過(guò)分析學(xué)生以往的學(xué)習(xí)興趣和學(xué)習(xí)習(xí)慣,預(yù)測(cè)學(xué)生的知識(shí)需求和常犯錯(cuò)誤,動(dòng)態(tài)地將不同的學(xué)習(xí)內(nèi)容、學(xué)習(xí)方法與不同的學(xué)生匹配,智能地分析學(xué)生錯(cuò)誤的原因進(jìn)而針對(duì)地提出合理的教學(xué)建議、學(xué)習(xí)建議以及改進(jìn)方法。
新世紀(jì)的教學(xué)將是以智能化的ICAI為主線,是多學(xué)科、多方位發(fā)展的新技術(shù)的體現(xiàn)。隨著人工智能技術(shù)的發(fā)展、計(jì)算機(jī)輔助教學(xué)的成效將更加明顯。
參考文獻(xiàn):
[1]王萬(wàn)森.人工之恩那個(gè)原理及其應(yīng)用.電子工業(yè)出版社,2007-3-4.
[2]李東.人工智能技術(shù)發(fā)展概述和應(yīng)用.可編程控制器與工廠自動(dòng)化,2006-6-9
智能計(jì)算機(jī)應(yīng)用論文范文二:試論認(rèn)知計(jì)算機(jī)輔助工藝設(shè)計(jì)與人工智能
論文關(guān)鍵字:計(jì)算機(jī)輔助工藝設(shè)計(jì)(CAPP) 人工智能(AI)
論文摘要:隨著計(jì)算機(jī)技術(shù)的發(fā)展和應(yīng)用,制造也得發(fā)展已經(jīng)離不開(kāi)計(jì)算機(jī)了,計(jì)算機(jī)輔助工藝設(shè)計(jì)和人工智能應(yīng)運(yùn)而生,當(dāng)很多非專業(yè)性人士對(duì)此概念十分模糊,本文初步解釋兩個(gè)概念和其應(yīng)用范圍。
計(jì)算機(jī)輔助工藝設(shè)計(jì)(CAPP:Computer Aided ProeessPlanning),自1965年由挪威人Nikbel提出以來(lái),其系統(tǒng)特性經(jīng)歷了檢索式、派生式、混合式、創(chuàng)成式、智能化等過(guò)程,智能化CAPP是當(dāng)前CAPP系統(tǒng)的研究熱點(diǎn)。CAPP是現(xiàn)代制造業(yè)信息化的一部分,是計(jì)算機(jī)集成制造系統(tǒng)(CIMS:Computer IntegratedManufacturing Systems)中的橋梁和紐帶。“人工智能”(Artificial Intelligence)簡(jiǎn)稱AI。它是研究、開(kāi)發(fā)用于模擬、延伸和擴(kuò)展人的智能的理論、方法、技術(shù)及應(yīng)用系統(tǒng)的一門新的技術(shù)科學(xué)。人工智能研究如何用計(jì)算機(jī)去模擬、延伸和擴(kuò)展人的智能;如何把計(jì)算機(jī)用得更聰明;如何設(shè)計(jì)和建造具有高智能水平的計(jì)算機(jī)應(yīng)用系統(tǒng);如何設(shè)計(jì)和制造更聰明的計(jì)算機(jī)以及智能水平更高的智能計(jì)算機(jī)等。人工智能是相對(duì)于人類智能而言的,它是采用人工的方法和技術(shù)來(lái)模擬、延伸和擴(kuò)展人類智能行為的一門綜合學(xué)科。
將人工智能技術(shù)(AI技術(shù))應(yīng)用到CAPP系統(tǒng)開(kāi)發(fā)中,使CAPP系統(tǒng)在知識(shí)獲取、知識(shí)推理等方面模擬人的思維方式,解決復(fù)雜的工藝規(guī)程設(shè)計(jì)問(wèn)題,使其具有人類“智能”的特性即為智能化CAPP,是AI在CAPP中的一種應(yīng)用。
CAPP系統(tǒng)分為專用型和工具型系統(tǒng)。前者可以根據(jù)用戶的特定需求定制開(kāi)發(fā),針對(duì)性強(qiáng),具有較好的實(shí)用性,但對(duì)系統(tǒng)進(jìn)行功能擴(kuò)展困難;后者可以由用戶根據(jù)自身特定的要求進(jìn)行二次開(kāi)發(fā),可以實(shí)現(xiàn)更多的柔性和開(kāi)放性,這種系統(tǒng)與CAD(計(jì)算機(jī)輔助設(shè)計(jì))、CAM(計(jì)算機(jī)輔助制造)、PDM(產(chǎn)品數(shù)據(jù)管理)等系統(tǒng)的信息共享存在缺陷。
CAPP設(shè)計(jì)理論目前研究的很少,機(jī)械產(chǎn)品設(shè)計(jì)理論研究的較多,有學(xué)者認(rèn)為設(shè)計(jì)理論與方法由設(shè)計(jì)理論基礎(chǔ)層、設(shè)計(jì)工具和支持技術(shù)平臺(tái)層等三大部分組成。有的學(xué)者提出四理論框架,即設(shè)計(jì)過(guò)程理論、性能需求理論、知識(shí)流理論和多方利益協(xié)調(diào)理論。CAPP設(shè)計(jì)理論與機(jī)械產(chǎn)品設(shè)計(jì)理論既有共同性又有特殊性,特別在智能化設(shè)計(jì)方法方面有較大的差別,因此認(rèn)為面向智能化的CAPP設(shè)計(jì)理論與方法體系結(jié)構(gòu)由有三層組成,即基礎(chǔ)科學(xué)層、信息技術(shù)層和智能化設(shè)計(jì)方法層。
在機(jī)械產(chǎn)品工藝設(shè)計(jì)中,存在大量的不確定因素,許多問(wèn)題需要靠經(jīng)驗(yàn)來(lái)解決,早期建立在單純依賴于成組技術(shù)基礎(chǔ)上的CAPP系統(tǒng),不能很好地解決這些離散知識(shí)的獲取問(wèn)題,只能設(shè)計(jì)出檢索式或派生式系統(tǒng)。近年來(lái),人工智能技術(shù)在CAPP系統(tǒng)
開(kāi)發(fā)中的應(yīng)用,使CAPP技術(shù)得到了較大的發(fā)展,人工神經(jīng)網(wǎng)絡(luò)技術(shù)就是AI在CAPP系統(tǒng)中一大應(yīng)用。人工神經(jīng)網(wǎng)絡(luò)(ANN: ArtificialNeuralNetwork)是按照生物神經(jīng)系統(tǒng)原理處理真實(shí)世界的客觀事物,它由大量的簡(jiǎn)單的非線性處理單元高度并聯(lián)而成,具有信息的分布式存儲(chǔ)、并行處理、自組織和自學(xué)習(xí)及聯(lián)想記憶等特性;多層前饋網(wǎng)絡(luò)誤差反向傳播(ErrorBack Propagation,簡(jiǎn)稱BP)算法。反向傳播算法(BP)是一種監(jiān)督訓(xùn)練多層神經(jīng)網(wǎng)絡(luò)的算法,每一個(gè)訓(xùn)練范例在網(wǎng)絡(luò)中經(jīng)過(guò)兩遍傳遞計(jì)算:第一遍向前推算,從輸入層開(kāi)始,傳遞各層并經(jīng)過(guò)處理后,產(chǎn)生一個(gè)輸出,并得到一個(gè)該實(shí)際輸出和所需輸出之差的差錯(cuò)矢量;第二遍向后推算,從輸出層至輸入層,利用差錯(cuò)矢量對(duì)權(quán)值進(jìn)行逐層修改。 AI在CAPP中的另一應(yīng)用——粗糙集技術(shù)。粗糙集(RS:Rough Set)理論是一種擅長(zhǎng)處理含糊和不確定問(wèn)題的數(shù)學(xué)工具,在理論中“知識(shí)”被認(rèn)為是一種對(duì)對(duì)象的分類能力,通常采用二維決策表來(lái)描述論域的信息,其中列表示屬性,行表示對(duì)象,每行表示該對(duì)象的一條信息。屬性分為條件屬性和決策屬性,論域中的對(duì)象根據(jù)條件屬性的不同,被劃分到具有不同決策屬性的決策類中。在CAPP系統(tǒng)中,可以用RS理論構(gòu)建專家系統(tǒng),對(duì)知識(shí)進(jìn)行獲取及優(yōu)化,其基本思路是:將各種零件的加工特征和已知加工方法表達(dá)成條件屬性和決策屬性的形式,一行表示一種零件,多種零件構(gòu)成一個(gè)二維表,對(duì)屬性進(jìn)行量化,組織決策表,再采用一定的約簡(jiǎn)算法對(duì)屬性集和屬性值進(jìn)行約簡(jiǎn),去掉冗余的條件屬性和決策規(guī)則,得到最小化決策規(guī)則集,當(dāng)輸入待加工的零件加工特征時(shí),就可得到優(yōu)化的加工工藝。
遺傳算法,AI在CAPP系統(tǒng)的又一應(yīng)用。遺傳算法(Genetic Algorithm)是模擬達(dá)爾文遺傳選擇和自然淘汰的生物進(jìn)化過(guò)程的計(jì)算模型,是一種通過(guò)模擬自然進(jìn)化過(guò)程搜索最優(yōu)解的方法。遺傳算法是從代表問(wèn)題可能潛在解集的一個(gè)種群開(kāi)始的,而一個(gè)種群則由經(jīng)過(guò)基因編碼的一定數(shù)目的個(gè)體組成,每個(gè)個(gè)體實(shí)際上是帶有染色體特征的實(shí)體。因此,在一開(kāi)始需要實(shí)現(xiàn)從表現(xiàn)型到基因型的映射即編碼工作,如二進(jìn)制編碼。初代種群產(chǎn)生之后,按照適者生存和優(yōu)勝劣汰的原理,逐代演化產(chǎn)生出越來(lái)越好的近似解,在每一代,根據(jù)問(wèn)題域中個(gè)體的適應(yīng)度大小挑選個(gè)體,并借助于自然遺傳學(xué)的遺傳算子進(jìn)行組合交叉和變異,產(chǎn)生代表新的解集的種群。這個(gè)過(guò)程將導(dǎo)致種群像自然進(jìn)化一樣的后生代種群比前代更加適應(yīng)于環(huán)境,末代種群中的最優(yōu)個(gè)體經(jīng)過(guò)解碼,可以作為問(wèn)題近似最優(yōu)解。
智能化CAPP系統(tǒng)開(kāi)發(fā)中還有模糊推理、混沌理論等智能化方法,實(shí)際應(yīng)用中,往往將多種智能技術(shù)相互結(jié)合,綜合運(yùn)用,發(fā)揮各自的特長(zhǎng),如人工神經(jīng)網(wǎng)絡(luò)具有知覺(jué)形象思維的特性,而模糊推理等具有邏輯思維的特性,將這些方法相互滲透和結(jié)合,可起到互補(bǔ)的作用,提高智能化水平。
智能化是今后CAPP系統(tǒng)發(fā)展的主要趨勢(shì),但從目前的人工智能技術(shù)水平來(lái)看,不可能使CAPP系統(tǒng)在智能化水平上有實(shí)質(zhì)性的突破,因?yàn)槟壳暗娜斯ぶ悄芗夹g(shù)主要是模擬人的邏輯思維和邏輯推理方面的能力,不能有效地模擬人的形象思維、抽象思維和創(chuàng)造性思維能力,而CAPP系統(tǒng)不僅要有推理的功能,還要有“聯(lián)想”的功能, CAPP系統(tǒng)開(kāi)發(fā)是要解決大量的人類思維活動(dòng)方面的智能問(wèn)題。因此要提高CAPP系統(tǒng)的智能化水平,必須在人工智能技術(shù)方面有新的發(fā)展,要解決人工智能技術(shù)方面的問(wèn)題,必須在一些基礎(chǔ)
理論和基礎(chǔ)科學(xué)方面有新的突破,如在生命科學(xué)、數(shù)學(xué)等方面要有新的突破。由此可見(jiàn),在可以預(yù)見(jiàn)的將來(lái),智能化CAPP系統(tǒng)的發(fā)展仍將是在充分發(fā)揮人的智能優(yōu)勢(shì)的基礎(chǔ)上,綜合應(yīng)用各種人工智能技術(shù),實(shí)現(xiàn)CAPP系統(tǒng)的智能化。
通過(guò)以上論述,相信大家對(duì)計(jì)算機(jī)輔助工藝設(shè)計(jì)與人工智能以及AI在CAPP中的應(yīng)用有了一定的了解。人工智能技術(shù)的不斷發(fā)展,智能化CAPP系統(tǒng)必將在知識(shí)獲取、表達(dá)和處理的靈活性和有效性上得到進(jìn)一步的發(fā)展,提高CAPP系統(tǒng)的智能化水平,從而提高現(xiàn)代制造技術(shù)水平,是我國(guó)由制造大國(guó)成為制造強(qiáng)國(guó)。
參考文獻(xiàn):
[1]鄭堅(jiān), 面向智能化的CAPP設(shè)計(jì)理論與方法研究,江西藍(lán)天學(xué)院學(xué)報(bào);
[2]王杰教授四川大學(xué)08級(jí)機(jī)制專業(yè)討論課;
淺談智能計(jì)算機(jī)應(yīng)用論文相關(guān)文章:
3.淺談?dòng)?jì)算機(jī)科學(xué)技術(shù)在計(jì)算機(jī)教學(xué)中的應(yīng)用論文
4.關(guān)于計(jì)算機(jī)應(yīng)用方面論文