特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學(xué)習(xí)啦——考試網(wǎng)>學(xué)歷類考試>中考頻道>中考科目>中考數(shù)學(xué)>

2017年江蘇連云港中考數(shù)學(xué)練習(xí)真題(2)

時間: 漫柔41 分享

  (2)請通過列表,描點(diǎn),連線畫出這個函數(shù)的圖象:

  ①列表:

  x … ﹣8 ﹣4 ﹣3 ﹣2 ﹣1 ﹣

  1 2 3 4 8 …

  y …

  1

  0 ﹣2 ﹣6 10 6 4

  3

  …

 ?、诿椟c(diǎn)(在下面給出的直角坐標(biāo)系中補(bǔ)全表中對應(yīng)的各點(diǎn));

 ?、圻B線(將圖中描出的各點(diǎn)用平滑的曲線連接起來,得到函數(shù)的圖象).

  (3)觀察函數(shù)的圖象,回答下列問題:

  ①圖象與x軸有 1 個交點(diǎn),所以對應(yīng)的方程2+ =0實數(shù)根是 x=﹣2 ;

 ?、诤瘮?shù)圖象的對稱性是 A .

  A、既是軸對稱圖形,又是中心對稱圖形

  B、只是軸對稱圖形,不是中心對稱圖形

  C、不是軸對稱圖形,而是中心對稱圖形

  D、既不是軸對稱圖形也不是中心對稱圖形

  (4)寫出函數(shù)y=2+ 與y= 的圖象之間有什么關(guān)系?(從形狀和位置方面說明)

  【考點(diǎn)】G4:反比例函數(shù)的性質(zhì);G2:反比例函數(shù)的圖象.

  【分析】(1)根據(jù)分式有意義的條件即可得到結(jié)論;

  (2)根據(jù)題意作出圖象即可;

  (3)①②根據(jù)圖象即可得到結(jié)論;

  (4)根據(jù)函數(shù)關(guān)系式即可得到結(jié)論.

  【解答】解:(1)自變量x的取值范圍:x≠0;

  故答案為:x≠0;

  (2)(2,4),(4,3)需要補(bǔ)上,所示;

  (3)①圖象與x軸有1個交點(diǎn),所以對應(yīng)的方程2+ =0實數(shù)根是x=﹣2,

  ②A,

  故答案為:1,x=﹣2;A;

  (4)將函數(shù)y= 的圖象向上平移2個單位就可以得到函數(shù)y=2+ 的圖象.

  19.,在坡角為30°的山坡上有一鐵塔AB,其正前方矗立著一大型廣告牌,當(dāng)陽光與水平線成45°角時,測得鐵塔AB落在斜坡上的影子BD的長為6米,落在廣告牌上的影子CD的長為4米,求鐵塔AB的高(AB,CD均與水平面垂直,結(jié)果保留根號).

  【考點(diǎn)】T9:解直角三角形的應(yīng)用﹣坡度坡角問題.

  【分析】過點(diǎn)C作CE⊥AB于E,過點(diǎn)B作BF⊥CD于F,在Rt△BFD中,分別求出DF、BF的長度,在Rt△ACE中,求出AE、CE的長度,繼而可求得AB的長度.

  【解答】解:過點(diǎn)C作CE⊥AB于E,過點(diǎn)B作BF⊥CD于F,

  在Rt△BFD中,

  ∵∠DBF=30°,sin∠DBF= = ,cos∠DBF= = ,

  ∵BD=6,

  ∴DF=3,BF=3 ,

  ∵AB∥CD,CE⊥AB,BF⊥CD,

  ∴四邊形BFCE為矩形,

  ∴BF=CE=3 ,CF=BE=CD﹣DF=1,

  在Rt△ACE中,∠ACE=45°,

  ∴AE=CE=3 ,

  ∴AB=3 +1.

  答:鐵塔AB的高為(3 +1)m.

  20.,已知ED為⊙O的直徑且ED=4,點(diǎn)A(不與E、D重合)為⊙O上一個動點(diǎn),線段AB經(jīng)過點(diǎn)E,且EA=EB,F(xiàn)為⊙O上一點(diǎn),∠FEB=90°,BF的延長線交AD的延長線交于點(diǎn)C.

  (1)求證:△EFB≌△ADE;

  (2)當(dāng)點(diǎn)A在⊙O上移動時,直接回答四邊形FCDE的最大面積為多少.

  【考點(diǎn)】M5:圓周角定理;H7:二次函數(shù)的最值;KD:全等三角形的判定與性質(zhì).

  【分析】(1)連接FA,根據(jù)垂直的定義得到EF⊥AB,得到BF=AF,推出BF=ED,根據(jù)全等三角形的判定定理即可得到結(jié)論;

  (2)根據(jù)全等三角形的性質(zhì)得到∠B=∠AED,得到DE∥BC,推出四邊形形FCDE,得到E到BC的距離最大時,四邊形FCDE的面積最大,即點(diǎn)A到DE的距離最大,推出當(dāng)A為 的中點(diǎn)時,于是得到結(jié)論.

  【解答】解:(1)連接FA,

  ∵∠FEB=90°,

  ∴EF⊥AB,

  ∵BE=AE,

  ∴BF=AF,

  ∵∠FEA=∠FEB=90°,

  ∴AF是⊙O的直徑,

  ∴AF=DE,

  ∴BF=ED,

  在Rt△EFB與Rt△ADE中, ,

  ∴Rt△EFB≌Rt△ADE;

  (2)∵Rt△EFB≌Rt△ADE,

  ∴∠B=∠AED,

  ∴DE∥BC,

  ∵ED為⊙O的直徑,

  ∴AC⊥AB,

  ∵EF⊥AB,

  ∴EF∥CD,

  ∴四邊形形FCDE,

  ∴E到BC的距離最大時,四邊形FCDE的面積最大,

  即點(diǎn)A到DE的距離最大,

  ∴當(dāng)A為 的中點(diǎn)時,

  點(diǎn)A到DE的距離最大是2,

  ∴四邊形FCDE的最大面積=4×2=8.

  21.小張前往某精密儀器產(chǎn)應(yīng)聘,公司承諾工資待遇.進(jìn)廠后小張發(fā)現(xiàn):加工1件A型零件和3件B型零件需5小時;加工2件A型零件和5件B型零件需9小時.

  工資待遇:每月工資至少3000元,每天工作8小時,每月工作25天,加工1件A型零件計酬16元,加工1件B型零件計酬12元,月工資=底薪+計件工資.

  (1)小張加工1件A型零件和1件B型零件各需要多少小時?

  (2)若公司規(guī)定:小張每月必須加工A、B兩種型號的零件,且加工B型的數(shù)量不大于A型零件數(shù)量的2倍,設(shè)小張每月加工A型零件a件,工資總額為W元,請你運(yùn)用所學(xué)知識判斷該公司頒布執(zhí)行此規(guī)定后是否違背了工資待遇承諾?

  【考點(diǎn)】FH:一次函數(shù)的應(yīng)用;9A:二元一次方程組的應(yīng)用.

  【分析】(1)設(shè)小張加工1件A型零件需要x小時,加工1件B型零件需要y小時,根據(jù)題意列出方程組,求出方程組的解即可得到結(jié)果;

  (2)表示出小張每月加工的零件件數(shù),進(jìn)而列出W與a的函數(shù),利用一次函數(shù)性質(zhì)確定出最大值,即可作出判斷.

  【解答】解:(1)設(shè)小張加工1件A型零件需要x小時,加工1件B型零件需要y小時,

  根據(jù)題意得: ,

  解得: ,

  則小張加工1件A型零件需要2小時,加工1件B型零件需要1小時;

  (2)由(1)可得小張每月加工A型零件a件時,還可以加工B型零件(8×25﹣2a)件,

  根據(jù)題意得:W=16a+12×(8×25﹣2a)+800=﹣8a+3200,

  ∵﹣8<0,

  ∴W隨a的增大而減小,

  當(dāng)a=50時,W最大值為2800,

  ∵2800<3000,

  ∴該公司執(zhí)行后違背了在工資待遇方面的承諾.

  22.已知,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動點(diǎn)(點(diǎn)D不與B、C重合),以AD為邊在AD的上邊作正方形ADEF,連接CF.

  (1)觀察猜想:1,當(dāng)點(diǎn)D在線段BC上時,①BC與CF的位置關(guān)系為: BC⊥CF ;②BC、CD、CF之間的數(shù)量關(guān)系為: CF=BC﹣CD .

  (2)數(shù)學(xué)思考:2,當(dāng)點(diǎn)D在線段CB的延長線上時,以上①②關(guān)系是否成立,請在后面的橫線上寫出正確的結(jié)論.①BC與CF的位置關(guān)系為: BC⊥CF ;②BC、CD、CF之間的數(shù)量關(guān)系為: CF=CD﹣BC .

  (3)3,當(dāng)點(diǎn)D在線段BC的延長線上時,延長BA交CF于點(diǎn)G,連接GD,若已知AB=2 ,CD= BC,請求出DG的長(寫出求解過程).

  【考點(diǎn)】LO:四邊形綜合題.

  【分析】(1)①證出∠BAD=∠CAF,由SAS證明△BAD≌△CAF,得出∠ACF=∠ABD=45°,證出∠ACF+∠ACB=90°,即可得出結(jié)論;

 ?、谟扇热切蔚男再|(zhì)得出BD=CF,證出CF=BC﹣CD即可;

  (2)①證出∠BAD=∠CAF,由SAS證明△BAD≌△CAF,得出∠ACF=∠ABD=180°﹣45°=135°,證出∠ACB+∠FCB=135°,得出∠FCB=90°,即可得出結(jié)論;

 ?、谟扇热切蔚男再|(zhì)得出BD=CF,證出CF=CD﹣BC即可;

  (3)由SAS證明△BAD≌△CAF,得出∠ACF=∠ABD=45°,證出∠FCB=∠ACF+∠ACB=90°,得出CF⊥BC,在Rt△ABC中,由勾股定理得出AC=AB=2 ,在Rt△AGC中,得出CG= AC= ×2 =4,同理BC=4,CD= BC=1,在Rt△DCG中,由勾股定理即可求出DG的長.

  【解答】(1)證明:①∵∠BAC=90°,AB=AC,

  ∴∠ABC=∠ACB=45°,

  ∵四邊形ADEF是正方形,

  ∴AD=AF,∠DAF=90°,

  ∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°,

  ∴∠BAD=∠CAF,

  在△BAD和△CAF中, ,

  ∴△BAD≌△CAF(SAS),

  ∴∠ACF=∠ABD=45°,

  ∴∠ACF+∠ACB=90°,

  ∴∠BCF=90°,

  ∴BC⊥CF,

  故答案為:BC⊥CF;

 ?、谟散佟鰾AD≌△CAF,

  ∴BD=CF,

  ∵BD=BC﹣CD,

  ∴CF=BC﹣CD,

  故答案為:CF=BC﹣CD;

  (2)解:①成立,②不成立;理由如下:

 ?、佟?ang;BAC=90°,AB=AC,

  ∴∠ABC=∠ACB=45°,

  ∵四邊形ADEF是正方形,

  ∴AD=AF,∠DAF=90°,

  ∵∠BAC=∠BAF+∠FAC=90°,∠DAF=∠BAF+∠DAB=90°,

  ∴∠BAD=∠CAF,

  在△BAD和△CAF中, ,

  ∴△BAD≌△CAF(SAS),

  ∴∠ACF=∠ABD=180°﹣45°=135°,

  ∴∠ACB+∠FCB=135°,

  ∴∠FCB=90°,

  ∴BC⊥CF,

  故答案為:BC⊥CF;

 ?、谟散佟鰾AD≌△CAF,

  ∴BD=CF,

  ∵BD=CD﹣BC,

  ∴CF=CD﹣BC,

  故答案為:CF=CD﹣BC;

  (3)解:由題意得:∠BAC=∠FAD=90°,

  ∴∠BAD=∠CAF,

  在△BAD和△CAF中, ,

  ∴△BAD≌△CAF(SAS),

  ∴∠ACF=∠ABD=45°,

  ∴∠FCB=∠ACF+∠ACB=45°+45°=90°,

  ∴CF⊥BC,

  在Rt△ABC中,AC=AB=2 ,

  在Rt△AGC中,∵∠ACF=45°,

  ∴CG= AC= ×2 =4,

  同理BC=4,

  CD= BC= ×4=1,

  ∴在Rt△DCG中,DG= = = .

  23.,在平面直角坐標(biāo)系中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),C(3,1)拋物線y= x2+bx﹣2的圖象過C點(diǎn),交y軸于點(diǎn)D.【來源:21•世紀(jì)•教育•網(wǎng)】

  (1)在后面的橫線上直接寫出點(diǎn)D的坐標(biāo)及b的值: (0,﹣2) ,b=   ;

  (2)平移該拋物線的對稱軸所在直線l,設(shè)l與x軸交于點(diǎn)G(x,0),當(dāng)OG等于多少時,恰好將△ABC的面積分為相等的兩部分?

  (3)點(diǎn)P是拋物線上一動點(diǎn),是否存在點(diǎn)P,使四邊形PACB為平行四邊形?若存在,直接寫出P點(diǎn)坐標(biāo);若不存在,說明理由.

  【考點(diǎn)】HF:二次函數(shù)綜合題.

  【分析】(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式,根據(jù)自變量與函數(shù)值得對應(yīng)關(guān)系,可得D點(diǎn)坐標(biāo);

  (2)根據(jù)勾股定理,可得AB的長,根據(jù)三角形的面積,可得△ABC的面積,根據(jù)待定系數(shù)法,可得AC,BC的解析式,根據(jù)平行于y軸的直線上兩點(diǎn)間的距離是較大的縱坐標(biāo)減較小的縱坐標(biāo),可得EF的長,根據(jù)△EFC的面積與△ABC的關(guān)系,可得關(guān)于x的方程,根據(jù)解方程,可得答案;

  (3)根據(jù)一個角的兩邊平行于另一個角的兩邊,可得這兩個角相等,根據(jù)全等三角形的判定與性質(zhì),可得PN,AN,根據(jù)點(diǎn)的坐標(biāo),可得P點(diǎn),根據(jù)點(diǎn)的坐標(biāo)滿足函數(shù)解析式,可得點(diǎn)在函數(shù)圖象上.

  【解答】解:(1)將C點(diǎn)坐標(biāo)代入解析式,得

  ×32+3b﹣2=1,

  解得b= ,

  函數(shù)解析式y(tǒng)= x2+ x﹣2,

  當(dāng)x=0時,y=﹣2,即D(0,﹣2),

  故答案為:(0,﹣2), ;

  (2)在Rt△A0B中,OA=1,OB=2,由勾股定理,得

  AB2=OA2+OB2=5,

  ∴S△ABC= AB2= ,

  設(shè)l與AC、BC分別交于E,F(xiàn),直線BC所在的直線解析式為y=kx+b,

  將B(0,2),C(3,1)代入函數(shù)解析式,得

  ,

  解得 ,

  直線BC的解析式為y=﹣ x+2,

  同理直線AC的解析式為y= x﹣ ,

  ∴點(diǎn)E,F(xiàn)的坐標(biāo)為E(x, x﹣ ),F(xiàn)(x,﹣ x+2),

  EF=(﹣ x+2)﹣( x﹣ )= ﹣ x,

  過C作CH⊥x軸于H點(diǎn),

  ,

  在△CEF中,EF邊上的高h(yuǎn)=OH﹣x=3﹣x,

  由題意可知S△CEF= S△ABC= EF•h,

  即 ( ﹣ x)(3﹣x)= × ,

  解得x1=3﹣ ,x2=3+ (不符合題意,舍),

  當(dāng)OG=3﹣ 時,恰好將△ABC的面積分為相等的兩部分;

  (3)拋物線上存在點(diǎn)P,使四邊形PACB為平行四邊形,

  2 ,

  過C作CM⊥y軸于點(diǎn)M,則CM=3,OM=1,BM=OB﹣OM=1.

  過點(diǎn)P作PA∥BC,且AP=BC,連接BP,則四邊形PABC是平行四邊形,

  ∵ ,

  ∴∠PAN=∠BCM.

  過點(diǎn)P作PN⊥x軸于N,

  在△APN和△CBM中,

  ∴△PAN≌△BCM,

  ∴PN=BM=1,AN=CM=3,

  ∴ON=AN﹣OA=2,

  ∴P點(diǎn)坐標(biāo)為(﹣2,1).

  拋物線解析式為:y= x2+ x﹣2,當(dāng)x=﹣2時,y=1,即點(diǎn)P在拋物線上.

  ∴存在符合條件的點(diǎn)P,點(diǎn)P的坐標(biāo)為(﹣2,1).

猜你喜歡:

1.2017年中考數(shù)學(xué)試卷含答案

2.2017中考數(shù)學(xué)基本定理匯總

3.2017中考數(shù)學(xué)常見的統(tǒng)計圖表練習(xí)題及答案

4.2017中考數(shù)學(xué)練習(xí)題附答案

5.2017中考數(shù)學(xué)試題及答案

2017年江蘇連云港中考數(shù)學(xué)練習(xí)真題(2)

(2)請通過列表,描點(diǎn),連線畫出這個函數(shù)的圖象: ①列表: x ﹣8 ﹣4 ﹣3 ﹣2 ﹣1 ﹣ 1 2 3 4 8 y 1 0 ﹣2 ﹣6 10 6 4 3 ②描點(diǎn)(在下面給出的直角坐標(biāo)系中補(bǔ)全表中
推薦度:
點(diǎn)擊下載文檔文檔為doc格式

精選文章

  • 2017年嘉興數(shù)學(xué)中考模擬真題及答案
    2017年嘉興數(shù)學(xué)中考模擬真題及答案

    考生想在中考數(shù)學(xué)中取得突破就要多做數(shù)學(xué)中考模擬考題,為了幫助考生們掌握,以下是小編精心整理的2017年嘉興數(shù)學(xué)中考模擬考題及答案,希望能幫到大

  • 2017年濟(jì)寧中考數(shù)學(xué)練習(xí)試題及答案
    2017年濟(jì)寧中考數(shù)學(xué)練習(xí)試題及答案

    中考想取得好成績就需要多做中考數(shù)學(xué)練習(xí)真題,學(xué)生備考的時候掌握中考數(shù)學(xué)練習(xí)真題自然能考得好。以下是小編精心整理的2017年濟(jì)寧中考數(shù)學(xué)練習(xí)真題

  • 2017年濟(jì)南數(shù)學(xué)中考模擬真題及答案
    2017年濟(jì)南數(shù)學(xué)中考模擬真題及答案

    初三的學(xué)生備考的j階段要多做數(shù)學(xué)中考模擬試題,并加以復(fù)習(xí),這樣能更快提升自己的成績。以下是小編精心整理的2017年濟(jì)南數(shù)學(xué)中考模擬試題及答案,

  • 2017年吉林省中考數(shù)學(xué)練習(xí)試卷及答案
    2017年吉林省中考數(shù)學(xué)練習(xí)試卷及答案

    學(xué)生想在中考得到好成績備考的時候就要多做中考數(shù)學(xué)練習(xí)試題,并加以復(fù)習(xí),這樣能更快提升自己的成績。以下是小編精心整理的2017年吉林省中考數(shù)學(xué)練

33172