高考數(shù)學復習備考計劃(2)
高考數(shù)學復習備考計劃篇三
(一)重視《考試大綱》與《考試說明》的學習,這兩本書是高考命題的依據(jù),是回答考什么、考多難、怎樣考這3個問題的具體規(guī)定和解說。
(二)重視課本的示范作用,雖然高考不會根據(jù)某一實驗教材來命題,但教材的示范作用絕不能低估。高三復習時間緊,任務重,內容多,但絕不能因此而脫離教材,相反,要緊扣大綱,抓住教材,在總體上把握教材,明確每一章、每一節(jié)的知識在整體中的地位的作用??v觀近幾年的高考試題,每年的試題都與教材有著密切的聯(lián)系,有的是將教材中的題目略加修改、變形后作為高考題,還有的是將教材中的題目合理拼湊、組合作為高考題。教材中還蘊涵著大量的數(shù)學思想方法和解題技巧,《數(shù)列》為例,其中推導等差數(shù)列前n項和公式用到了“倒序相加法”,推導等比數(shù)列前n項和公式用到了“錯位相減法”及分類討論的數(shù)學思想。
(三)注重主干知識的復習:代數(shù)著重考查函數(shù)學、數(shù)列、不等式、三角等主要內容;立體幾何著重考查線面關系、面積和體積的計算,理科著重坐標方法(即向量)的應用;解析幾何著重考查直線與圓錐曲線的位置關系;向量、概率、統(tǒng)計、導數(shù)等新增加內容的考查,既保持了較高的比例,也達到了必要的深度。這些主干知識己成為高考命題的主體。根據(jù)高考數(shù)學命題的特點,對數(shù)學基礎知識的考查,雖然不刻意追求知識點的百分比,但對支撐數(shù)學科知識體系的主干知識,考查時保證較高的比例,即重點知識重點考查,如函數(shù)及其性質的考查就保持了較高的比例,并達到必要的深度。由此可以預見,高考數(shù)學命題仍會強化主干知識,突出新增內容,但不刻意追求知識的覆蓋面。
從高考命題中我們可以看到:基本知識、基本技能、基本方法始終是高考數(shù)學試題考查的重點。選擇題、填空題以及解答題中的基本題所占分量達70℅以上。如果在復習中對基本知識不求甚解,都會導致在考試中出現(xiàn)錯誤。事實上,高考數(shù)學試題對知識的考查體現(xiàn)了基礎性,只有基礎扎實的考生才能正確地判斷,也只有基礎知識、基本技能扎實的考生,才能取得高分;另一方面,由于試題量大,解題速度慢的考生往往也無法完成全部試題的解答,而解題速度的快慢主要取決于基本技能、基本方法的熟練程度及數(shù)學能力的高低。因此,重視基礎知識、基本技能和基本方法的訓練十分重要。
(四)注重數(shù)學思想方法的復習。近幾年高考數(shù)學試題不僅緊扣教材,而且還十分重視數(shù)學思想方法的考查??荚囍行拿鞔_指出“注重數(shù)學能力的考查”,“有效地檢測考生對中學數(shù)學知識中所蘊含的數(shù)學思想和方法的掌握程度”,因此,在復習中同學們要特別重視數(shù)學思想和方法。高中數(shù)學解題的基本方法主要有:分析法、綜合法、配方法、換元法、待定系數(shù)法、判別式法、反證法、數(shù)學歸納法(理科)等。常用的數(shù)學思想有:函數(shù)與方程的思想,
數(shù)形結合思想,分類與整合思想,化歸與轉化思想,特殊與一般思想,算法思想,概率思想等。另外,對于選擇題和填空題還有一些常用的解題技巧,如特例法、排除法、圖象法、導數(shù)法等,復習時要善于對基本方法進行歸納和總結,在高考前的復習過程中,在復習基礎知識的同時,要進一步強化基本數(shù)學思想和方法的復習,只有這樣,在高考中才能靈活運用和綜合運用所學的知識。
(五)注重數(shù)學能力的提高,數(shù)學能力包括空間想象能力、抽象概括能力、推理論證能力、運算求解能力、數(shù)據(jù)處理能力以及應用意識和創(chuàng)新意識。數(shù)學高考對數(shù)學能力的考查,強調“以能力立意”,倡導以數(shù)學為載體,從學科的整體高度和思維價值的高度設計問題,在知識網絡的交匯點處設計試題,注重多角度地考查數(shù)學素養(yǎng),有層次地考察理性思維。因此,高考數(shù)學第二、第三輪復習要有意識地從多個角度提高數(shù)學能力,要特別注意通過解題思考和專項訓練來提高數(shù)學思維能力。
(六)注重應試技巧的訓練,雖然我們不能做考試的奴隸,但適當?shù)目荚囉柧毷潜夭豢缮俚?,在平時的復習考試中應做好如下幾點:
1.容易題爭取不丟分——規(guī)范表述少跳步
加強接替表述的規(guī)范性,準確運用數(shù)學語言,盡量做到容易提不丟分,解題中出現(xiàn)不恰當?shù)?ldquo;跳步”,使很多人容易失分。
2.中等題爭取少丟分——得分點處寫清楚
容易題和中檔題是試卷的主要構成部分,是考生得分的主要來源,是進一步解高考題的基礎,要確?;A分、拿下力爭分、不丟零碎分。
3.較難題爭取多拿分——知道一點寫一點
一道高考題做不出來,不等于一點想法都沒有,不等于所涉及的只是一片空白,尚未成功不等于切地失敗,應盡量將自己知道的寫出來。例如,涉及到直線與圓錐曲線的位置關系問題,一般只要聯(lián)立直線與圓錐曲線方程,消去一個未知數(shù)(如y),然后寫出這個一元二次方程(假如二次項系數(shù)不為零,否則要討論),寫出判別式和根與系數(shù)的關系,哪怕后面一點都不會解,也已拿到本體三分之一的分數(shù)。
4.克服“會而不對,對而不全”的問題
不怕難題不得分,就怕每題都扣分,例如在代數(shù)論證中“以圖代證”。盡管解題思路正確甚至很巧妙,但是由于不善于把“以圖代證”準確地轉譯為“文字語言”,得分少得可憐,只有重視解題過程的語言表述,“會做”題才能“得分”。
5.正確處理難題與容易題的關系
近年來考題的順序并不完全是按先易后難的順序,在答題時要按安排時間,不要在某個卡住的難題上打“持久戰(zhàn)”,那樣既耗費時間又拿不到分,會做的題又被耽誤了,造成“隱性失分”。解答題一般都設置了層次分明的“臺階”,入口難,入手易,但是深入難,解到底難,
因此看似容易的題也會有“咬手”的關卡,看似難做的題也有可得分之處,所以盡量做到中等題少丟分,難題多得分。
猜你感興趣的: