對(duì)口高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)
對(duì)口高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)(詳細(xì))
很多學(xué)生在高考復(fù)習(xí)數(shù)學(xué)知識(shí)時(shí),因?yàn)橹皼]有能夠系統(tǒng)的總結(jié),導(dǎo)致復(fù)習(xí)時(shí)整體效率不高。以下是小編準(zhǔn)備的對(duì)口高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié),歡迎借鑒參考。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
一、圓及圓的相關(guān)量的定義
1.平面上到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱為圓心,定長(zhǎng)稱為半徑。
2.圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點(diǎn)的線段叫做弦。經(jīng)過圓心的弦叫
做直徑。
3.頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。
4.過三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個(gè)三角形的內(nèi)切圓,其圓心稱為內(nèi)心。
5.直線與圓有3種位置關(guān)系:無公共點(diǎn)為相離;有2個(gè)公共點(diǎn)為相交;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。
6.兩圓之間有5種位置關(guān)系:無公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。
7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個(gè)扇形。這個(gè)扇形的半徑成為圓錐的母線。
二、有關(guān)圓的字母表示方法
圓--⊙ 半徑—r 弧--⌒ 直徑—d
扇形弧長(zhǎng)/圓錐母線—l 周長(zhǎng)—C 面積—S三、有關(guān)圓的基本性質(zhì)與定理(27個(gè))
1.點(diǎn)P與圓O的位置關(guān)系(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離):
P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO
2.圓是軸對(duì)稱圖形,其對(duì)稱軸是任意一條過圓心的直線。圓也是中心對(duì)稱圖形,其對(duì)稱中心是圓心。
3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的弧。逆定
理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的弧。
4.在同圓或等圓中,如果2個(gè)圓心角,2個(gè)圓周角,2條弧,2條弦中有一組量相等,那么他們所對(duì)應(yīng)的其余各組量都分別相等。
5.一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。
6.直徑所對(duì)的圓周角是直角。90度的圓周角所對(duì)的弦是直徑。
7.不在同一直線上的3個(gè)點(diǎn)確定一個(gè)圓。
8.一個(gè)三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點(diǎn),到三角形3個(gè)頂點(diǎn)距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點(diǎn),到三角形3邊距離相等。
9.直線AB與圓O的位置關(guān)系(設(shè)OP⊥AB于P,則PO是AB到圓心的距
離):
AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO
10.圓的切線垂直于過切點(diǎn)的直徑;經(jīng)過直徑的一端,并且垂直于這條直徑的直線,是這個(gè)圓的切線。
11.圓與圓的位置關(guān)系(設(shè)兩圓的半徑分別為R和r,且R≥r,圓心距為P):
外離P>R+r;外切P=R+r;相交R-r
三、有關(guān)圓的計(jì)算公式
1.圓的周長(zhǎng)C=2πr=πd
2.圓的面積S=s=πr?
3.扇形弧長(zhǎng)l=nπr/180
4.扇形面積S=nπr? /360=rl/2
5.圓錐側(cè)面積S=πrl
四、圓的方程
1.圓的標(biāo)準(zhǔn)方程
在平面直角坐標(biāo)系中,以點(diǎn)O(a,b)為圓心,以r為半徑的圓的標(biāo)準(zhǔn)方程是
(x-a)^2+(y-b)^2=r^2
2.圓的一般方程
把圓的標(biāo)準(zhǔn)方程展開,移項(xiàng),合并同類項(xiàng)后,可得圓的一般方程是
x^2+y^2+Dx+Ey+F=0
和標(biāo)準(zhǔn)方程對(duì)比,其實(shí)D=-2a,E=-2b,F=a^2+b^2
相關(guān)知識(shí):圓的離心率e=0.在圓上任意一點(diǎn)的曲率半徑都是r.
五、圓與直線的位置關(guān)系判斷
平面內(nèi),直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是
討論如下2種情況:
(1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],
代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的一元二次方程f(x)=0.
利用判別式b^2-4ac的符號(hào)可確定圓與直線的位置關(guān)系如下:
如果b^2-4ac>0,則圓與直線有2交點(diǎn),即圓與直線相交
如果b^2-4ac=0,則圓與直線有1交點(diǎn),即圓與直線相切
如果b^2-4ac<0,則圓與直線有0交點(diǎn),即圓與直線相離
(2)如果B=0即直線為Ax+C=0,即x=-C/A.它平行于y軸(或垂直于x軸)
將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2
令y=b,求出此時(shí)的兩個(gè)x值x1,x2,并且我們規(guī)定x1
當(dāng)x=-C/Ax2時(shí),直線與圓相離
當(dāng)x1
當(dāng)x=-C/A=x1或x=-C/A=x2時(shí),直線與圓相切
圓的定理:
1.不在同一直線上的三點(diǎn)確定一個(gè)圓。
2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
推論1.①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧
③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
推論2.圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
4.圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7.同圓或等圓的半徑相等
8.到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓
9.定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦 相等,所對(duì)的弦的弦心距相等
10.推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等
11.定理 圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它 的內(nèi)對(duì)角
12.①直線L和⊙O相交 d
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
13.切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點(diǎn)的半徑
15.推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)
16.推論2 經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心
17.切線長(zhǎng)定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等, 圓心和這一點(diǎn)的連線平分兩條切線的夾角
18.圓的外切四邊形的兩組對(duì)邊的和相等 外角等于內(nèi)對(duì)角
19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
20.①兩圓外離 d>R+r ②兩圓外切 d=R+r
③兩圓相交 R-rr)
④兩圓內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含dr)
21.定理 相交兩圓的連心線垂直平分兩圓的公共弦
22.定理 把圓分成n(n≥3):
(1)依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
(2)經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
23.定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
24.正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n
25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長(zhǎng)
27.正三角形面積√3a/4 a表示邊長(zhǎng)
28.如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
29.弧長(zhǎng)計(jì)算公式:L=n兀R/180
30.扇形面積公式:S扇形=n兀R^2/360=LR/2
31.內(nèi)公切線長(zhǎng)= d-(R-r) 外公切線長(zhǎng)= d-(R+r)
32.定理 一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
33.推論1 同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等
34.推論2 半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所 對(duì)的弦是直徑
35.弧長(zhǎng)公式 l=a__r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2__l__r
數(shù)學(xué)高考知識(shí)點(diǎn)精選總結(jié)
1.進(jìn)行集合的交、并、補(bǔ)運(yùn)算時(shí),不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進(jìn)行求解.
2.在應(yīng)用條件時(shí),易A忽略是空集的情況
3.你會(huì)用補(bǔ)集的思想解決有關(guān)問題嗎?
4.簡(jiǎn)單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?
5.你知道“否命題”與“命題的否定形式”的區(qū)別.
6.求解與函數(shù)有關(guān)的問題易忽略定義域優(yōu)先的原則.
7.判斷函數(shù)奇偶性時(shí),易忽略檢驗(yàn)函數(shù)定義域是否關(guān)于原點(diǎn)對(duì)稱.
8.求一個(gè)函數(shù)的解析式和一個(gè)函數(shù)的反函數(shù)時(shí),易忽略標(biāo)注該函數(shù)的定義域.
9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個(gè)函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)
10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值,作差,判正負(fù))和導(dǎo)數(shù)法
11.求函數(shù)單調(diào)性時(shí),易錯(cuò)誤地在多個(gè)單調(diào)區(qū)間之間添加符號(hào)“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示.
12.求函數(shù)的值域必須先求函數(shù)的定義域。
13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?①比較函數(shù)值的大小;②解抽象函數(shù)不等式;③求參數(shù)的范圍(恒成立問題).這幾種基本應(yīng)用你掌握了嗎?
14.解對(duì)數(shù)函數(shù)問題時(shí),你注意到真數(shù)與底數(shù)的限制條件了嗎?
(真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論
15.三個(gè)二次(哪三個(gè)二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?
16.用換元法解題時(shí)易忽略換元前后的等價(jià)性,易忽略參數(shù)的范圍。
17.“實(shí)系數(shù)一元二次方程有實(shí)數(shù)解”轉(zhuǎn)化時(shí),你是否注意到:當(dāng)時(shí),“方程有解”不能轉(zhuǎn)化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項(xiàng)系數(shù)可能為的零的情形?
18.利用均值不等式求最值時(shí),你是否注意到:“一正;二定;三等”.
19.絕對(duì)值不等式的解法及其幾何意義是什么?
20.解分式不等式應(yīng)注意什么問題?用“根軸法”解整式(分式)不等式的注意事項(xiàng)是什么?
21.解含參數(shù)不等式的通法是“定義域?yàn)榍疤幔瘮?shù)的單調(diào)性為基礎(chǔ),分類討論是關(guān)鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”.
22.在求不等式的解集、定義域及值域時(shí),其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示.
23.兩個(gè)不等式相乘時(shí),必須注意同向同正時(shí)才能相乘,即同向同正可乘;同時(shí)要注意“同號(hào)可倒”即a>b>0,a<0.
24.解決一些等比數(shù)列的前項(xiàng)和問題,你注意到要對(duì)公比及兩種情況進(jìn)行討論了嗎?
25.在“已知,求”的問題中,你在利用公式時(shí)注意到了嗎?(時(shí),應(yīng)有)需要驗(yàn)證,有些題目通項(xiàng)是分段函數(shù)。
26.你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無窮數(shù)列的概念嗎?你知道無窮數(shù)列的前項(xiàng)和與所有項(xiàng)的和的不同嗎?什么樣的無窮等比數(shù)列的所有項(xiàng)的和必定存在?
27.數(shù)列單調(diào)性問題能否等同于對(duì)應(yīng)函數(shù)的單調(diào)性問題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。)
28.應(yīng)用數(shù)學(xué)歸納法一要注意步驟齊全,二要注意從到過程中,先假設(shè)時(shí)成立,再結(jié)合一些數(shù)學(xué)方法用來證明時(shí)也成立。
29.正角、負(fù)角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標(biāo)軸上,那它歸哪個(gè)象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?
30.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?
31.在解三角問題時(shí),你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?
32.你還記得三角化簡(jiǎn)的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角.異角化同角,異名化同名,高次化低次)
33.反正弦、反余弦、反正切函數(shù)的取值范圍分別是
34.你還記得某些特殊角的三角函數(shù)值嗎?
35.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì).你會(huì)寫三角函數(shù)的單調(diào)區(qū)間嗎?會(huì)寫簡(jiǎn)單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書寫規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過怎樣的變換得到嗎?
36.函數(shù)的圖象的平移,方程的平移以及點(diǎn)的平移公式易混:
(1)函數(shù)的圖象的平移為“左+右-,上+下-”;如函數(shù)的圖象左移2個(gè)單位且下移3個(gè)單位得到的圖象的解析式為y=2(x+2)+4-3,即y=2x+5.
(2)方程表示的圖形的平移為“左+右-,上-下+”;如直線左移2個(gè)個(gè)單位且下移3個(gè)單位得到的圖象的解析式為2(x+2)-(y+3)+4=0,即y=2x+5.
(3)點(diǎn)的平移公式:點(diǎn)P(x,y)按向量平移到點(diǎn)P(x,y),則x=x+hy=y+k.
37.在三角函數(shù)中求一個(gè)角時(shí),注意考慮兩方面了嗎?(先求出某一個(gè)三角函數(shù)值,再判定角的范圍)
38.形如的周期都是,但的周期為。
39.正弦定理時(shí)易忘比值還等于2R。
高中數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)
1.等差數(shù)列的定義
如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。
2.等差數(shù)列的通項(xiàng)公式
若等差數(shù)列{an}的首項(xiàng)是a1,公差是d,則其通項(xiàng)公式為an=a1+(n-1)d。
3.等差中項(xiàng)
如果A=(a+b)/2,那么A叫做a與b的等差中項(xiàng)。
4.等差數(shù)列的常用性質(zhì)
(1)通項(xiàng)公式的推廣:an=am+(n-m)d(n,m∈N_)。
(2)若{an}為等差數(shù)列,且m+n=p+q,則am+an=ap+aq(m,n,p,q∈N_)。
(3)若{an}是等差數(shù)列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數(shù)列。
(4)數(shù)列Sm,S2m-Sm,S3m-S2m,…也是等差數(shù)列。
(5)S2n-1=(2n-1)an。
(6)若n為偶數(shù),則S偶-S奇=nd/2;若n為奇數(shù),則S奇-S偶=a中(中間項(xiàng))。
注意:
一個(gè)推導(dǎo)
利用倒序相加法推導(dǎo)等差數(shù)列的前n項(xiàng)和公式:
Sn=a1+a2+a3+…+an,①
Sn=an+an-1+…+a1,②
①+②得:Sn=n(a1+an)/2。
兩個(gè)技巧
已知三個(gè)或四個(gè)數(shù)組成等差數(shù)列的一類問題,要善于設(shè)元。
(1)若奇數(shù)個(gè)數(shù)成等差數(shù)列且和為定值時(shí),可設(shè)為…,a-2d,a-d,a,a+d,a+2d,…。
(2)若偶數(shù)個(gè)數(shù)成等差數(shù)列且和為定值時(shí),可設(shè)為…,a-3d,a-d,a+d,a+3d,…,其余各項(xiàng)再依據(jù)等差數(shù)列的定義進(jìn)行對(duì)稱設(shè)元。
四種方法
等差數(shù)列的判斷方法
(1)定義法:對(duì)于n≥2的任意自然數(shù),驗(yàn)證an-an-1為同一常數(shù);
(2)等差中項(xiàng)法:驗(yàn)證2an-1=an+an-2(n≥3,n∈N_)都成立;
(3)通項(xiàng)公式法:驗(yàn)證an=pn+q;
(4)前n項(xiàng)和公式法:驗(yàn)證Sn=An2+Bn。
注:后兩種方法只能用來判斷是否為等差數(shù)列,而不能用來證明等差數(shù)列。