特黄特色三级在线观看免费,看黄色片子免费,色综合久,欧美在线视频看看,高潮胡言乱语对白刺激国产,伊人网成人,中文字幕亚洲一碰就硬老熟妇

學(xué)習(xí)啦——考試網(wǎng)>學(xué)歷類考試>中考頻道>中考科目>中考數(shù)學(xué)>

2017眉山中考數(shù)學(xué)模擬試題及答案(2)

時間: 漫柔41 分享

 ?、凇弋?dāng)x≤﹣1時y隨x的增大而減小,

  ∴對稱軸直線x=﹣ ≤﹣1,

  解得m≤﹣1,故本小題錯誤;

 ?、邸邔⑺膱D象向左平移3個單位后過原點(diǎn),

  ∴平移前的圖象經(jīng)過點(diǎn)(3,0),

  代入函數(shù)關(guān)系式得,32﹣2m•3﹣3=0,

  解得m=1,故本小題正確;

 ?、堋弋?dāng)x=2時的函數(shù)值與x=8時的函數(shù)值相等,

  ∴對稱軸為直線x= =5,

  ∴﹣ =5,

  解得m=5,故本小題正確;

  綜上所述,結(jié)論正確的是①④共2個.

  故答案為:①③④.

  三、專心解一解(本大題共8小題,滿分72分.請認(rèn)真讀題,冷靜思考.解答題應(yīng)寫出必要的文字說明、證明過程或演算步驟.請把解題過程寫在答題卷相應(yīng)題號的位置)

  17.(1)計算:4sin60°﹣|3﹣ |+( )﹣2;

  (2)解方程:x2﹣ x﹣ =0.

  【考點(diǎn)】解一元二次方程﹣公式法;實(shí)數(shù)的運(yùn)算;負(fù)整數(shù)指數(shù)冪;特殊角的三角函數(shù)值.

  【分析】(1)本題涉及負(fù)整數(shù)指數(shù)冪、二次根式化簡、絕對值、特殊角的三角函數(shù)值四個考點(diǎn).針對每個考點(diǎn)分別進(jìn)行計算,然后根據(jù)實(shí)數(shù)的運(yùn)算法則求得計算結(jié)果;

  (2)利用配方法或公式法解答此題,均可得結(jié)果.

  【解答】解:(1)原式=2 ﹣2 +3+4

  =7;

  (2)方法一:移項(xiàng),得x2﹣ x= ,

  配方,得(x﹣ )2=1

  由此可得x﹣ =±1,

  x1=1+ ,x2=﹣1+

  方法二:a=1,b=﹣ ,c=﹣ .

  △=b2﹣4ac=(﹣ )2﹣4×1×(﹣ )=4>0

  方程有兩個不等的實(shí)數(shù)根

  x= = = ±1,

  x1=1+ ,x2=﹣1+

  18.如圖,點(diǎn)B(3,3)在雙曲線y= (x>0)上,點(diǎn)D在雙曲線y=﹣ (x<0)上,點(diǎn)A和點(diǎn)C分別在x軸,y軸的正半軸上,且點(diǎn)A,B,C,D構(gòu)成的四邊形為正方形.

  (1)求k的值;

  (2)求點(diǎn)A的坐標(biāo).

  【考點(diǎn)】正方形的性質(zhì);反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征;全等三角形的判定與性質(zhì).

  【分析】(1)把B的坐標(biāo)代入求出即可;

  (2)設(shè)MD=a,OM=b,求出ab=4,過D作DM⊥x軸于M,過B作BN⊥x軸于N,證△ADM≌△BAN,推出BN=AM=3,MD=AN=a,求出a=b,求出a的值即可.

  【解答】解:(1)∵點(diǎn)B(3,3)在雙曲線y= 上,

  ∴k=3×3=9;

  (2)∵B(3,3),

  ∴BN=ON=3,

  設(shè)MD=a,OM=b,

  ∵D在雙曲線y=﹣ (x<0)上,

  ∴ab=4,

  過D作DM⊥x軸于M,過B作BN⊥x軸于N,

  則∠DMA=∠ANB=90°,

  ∵四邊形ABCD是正方形,

  ∴∠DAB=90°,AD=AB,

  ∴∠MDA+∠DAM=90°,∠DAM+∠BAN=90°,

  ∴∠ADM=∠BAN,

  在△ADM和△BAN中,

  ,

  ∴△ADM≌△BAN(AAS),

  ∴BN=AM=3,DM=AN=a,

  ∴0A=3﹣a,

  即AM=b+3﹣a=3,

  a=b,

  ∵ab=4,

  ∴a=b=2,

  ∴OA=3﹣2=1,

  即點(diǎn)A的坐標(biāo)是(1,0).

  19.如圖,在▱ABCD中,F(xiàn)是AD的中點(diǎn),延長BC到點(diǎn)E,使CE= BC,連接DE,CF.

  (1)求證:DE=CF;

  (2)若AB=4,AD=6,∠B=60°,求DE的長.

  【考點(diǎn)】平行四邊形的性質(zhì);全等三角形的判定與性質(zhì).

  【分析】(1)由“平行四邊形的對邊平行且相等”的性質(zhì)推知AD∥BC,且AD=BC;然后根據(jù)中點(diǎn)的定義、結(jié)合已知條件推知四邊形CEDF的對邊平行且相等(DF=CE,且DF∥CE),得出四邊形CEDF是平行四邊形,即可得出結(jié)論;

  (2)如圖,過點(diǎn)D作DH⊥BE于點(diǎn)H,構(gòu)造含30度角的直角△DCH和直角△DHE.通過解直角△DCH和在直角△DHE中運(yùn)用勾股定理來求線段ED的長度.

  【解答】(1)證明:∵四邊形ABCD是平行四邊形,

  ∴AD=BC,AD∥BC.

  又∵F是AD的中點(diǎn),∴FD= AD.

  ∵CE= BC,

  ∴FD=CE.

  又∵FD∥CE,

  ∴四邊形CEDF是平行四邊形.

  ∴DE=CF.

  (2)解:過D作DG⊥CE于點(diǎn)G.如圖所示:

  ∵四邊形ABCD是平行四邊形,

  ∴AB∥CD,CD=AB=4,BC=AD=6.

  ∴∠DCE=∠B=60°.

  在Rt△CDG中,∠DGC=90°,

  ∴∠CDG=30°,

  ∴CG= CD=2.

  由勾股定理,得DG= =2 .

  ∵CE= BC=3,

  ∴GE=1.

  在Rt△DEG中,∠DGE=90°,

  ∴DE= = .

  20.某學(xué)校“體育課外活動興趣小組”,開設(shè)了以下體育課外活動項(xiàng)目:A.足球 B.乒乓球C.羽毛球 D.籃球,為了解學(xué)生最喜歡哪一種活動項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:

  (1)這次被調(diào)查的學(xué)生共有 200 人,在扇形統(tǒng)計圖中“D”對應(yīng)的圓心角的度數(shù)為 72° ;

  (2)請你將條形統(tǒng)計圖補(bǔ)充完整;

  (3)在平時的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加市里組織的乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答).

  【考點(diǎn)】列表法與樹狀圖法;扇形統(tǒng)計圖;條形統(tǒng)計圖.

  【分析】(1)利用扇形統(tǒng)計圖得到A類的百分比為10%,則用A類的頻數(shù)除以10%可得到樣本容量;然后用B類的百分比乘以360°得到在扇形統(tǒng)計圖中“D”對應(yīng)的圓心角的度數(shù);

  (2)先計算出C類的頻數(shù),然后補(bǔ)全統(tǒng)計圖;、

  (3)畫樹狀圖展示所有12種等可能的結(jié)果,再找出恰好選中甲、乙兩位同學(xué)的結(jié)果數(shù),然后根據(jù)概率公式求解.

  【解答】解:(1)20÷ =200,

  所以這次被調(diào)查的學(xué)生共有200人,

  在扇形統(tǒng)計圖中“D”對應(yīng)的圓心角的度數(shù)= ×360°=72°;

  故答案為200,72°;

  (2)C類人數(shù)為200﹣80﹣20﹣40=60(人),

  完整條形統(tǒng)計圖為:

  (3)畫樹狀圖如下:

  由上圖可知,共有12種等可能的結(jié)果,其中恰好選中甲、乙兩位同學(xué)的結(jié)果有2種.

  所以P(恰好選中甲、乙兩位同學(xué))= = .

  21.如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點(diǎn)D,連接AD,過點(diǎn)D作DE⊥AC,垂足為點(diǎn)E,交AB的延長線于點(diǎn)F.

  (1)求證:EF是⊙0的切線.

  (2)如果⊙0的半徑為5,sin∠ADE= ,求BF的長.

  【考點(diǎn)】切線的判定;等腰三角形的性質(zhì);圓周角定理;解直角三角形.

  【分析】(1)連接OD,AB為⊙0的直徑得∠ADB=90°,由AB=AC,根據(jù)等腰三角形性質(zhì)得AD平分BC,即DB=DC,則OD為△ABC的中位線,所以O(shè)D∥AC,而DE⊥AC,則OD⊥DE,然后根據(jù)切線的判定方法即可得到結(jié)論;

  (2)由∠DAC=∠DAB,根據(jù)等角的余角相等得∠ADE=∠ABD,在Rt△ADB中,利用解直角三角形的方法可計算出AD=8,在Rt△ADE中可計算出AE= ,然后由OD∥AE,

  得△FDO∽△FEA,再利用相似比可計算出BF.

  【解答】(1)證明:連接OD,如圖,

  ∵AB為⊙0的直徑,

  ∴∠ADB=90°,

  ∴AD⊥BC,

  ∵AB=AC,

  ∴AD平分BC,即DB=DC,

  ∵OA=OB,

  ∴OD為△ABC的中位線,

  ∴OD∥AC,

  ∵DE⊥AC,

  ∴OD⊥DE,

  ∴EF是⊙0的切線;

  (2)解:∵∠DAC=∠DAB,

  ∴∠ADE=∠ABD,

  在Rt△ADB中,sin∠ADE=sin∠ABD= = ,而AB=10,

  ∴AD=8,

  在Rt△ADE中,sin∠ADE= = ,

  ∴AE= ,

  ∵OD∥AE,

  ∴△FDO∽△FEA,

  ∴ = ,即 = ,

  ∴BF= .

  22.某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.

  (1)求每臺A型電腦和B型電腦的銷售利潤;

  (2)該商店計劃一次購進(jìn)兩種型號的電腦共100臺,其中B型電腦的進(jìn)貨量不超過A型電腦的2倍,設(shè)購進(jìn)A型電腦x臺,這100臺電腦的銷售總利潤為y元.

 ?、偾髖關(guān)于x的函數(shù)關(guān)系式;

 ?、谠撋痰曩忂M(jìn)A型、B型電腦各多少臺,才能使銷售總利潤最大?

  (3)實(shí)際進(jìn)貨時,廠家對A型電腦出廠價下調(diào)m(0

  【考點(diǎn)】一次函數(shù)的應(yīng)用;二元一次方程組的應(yīng)用;一元一次不等式組的應(yīng)用.

  【分析】(1)設(shè)每臺A型電腦銷售利潤為a元,每臺B型電腦的銷售利潤為b元;根據(jù)題意列出方程組求解,

  (2)①據(jù)題意得,y=﹣50x+15000,

  ②利用不等式求出x的范圍,又因?yàn)閥=﹣50x+15000是減函數(shù),所以x取34,y取最大值,

  (3)據(jù)題意得,y=x﹣150,即y=(m﹣50)x+15000,分三種情況討論,①當(dāng)00,y隨x的增大而增大,分別進(jìn)行求解.

  【解答】解:(1)設(shè)每臺A型電腦銷售利潤為a元,每臺B型電腦的銷售利潤為b元;根據(jù)題意得

  解得

  答:每臺A型電腦銷售利潤為100元,每臺B型電腦的銷售利潤為150元.

  (2)①據(jù)題意得,y=100x+150,即y=﹣50x+15000,

 ?、趽?jù)題意得,100﹣x≤2x,解得x≥33 ,

  ∵y=﹣50x+15000,﹣50<0,

  ∴y隨x的增大而減小,

  ∵x為正整數(shù),

  ∴當(dāng)x=34時,y取最大值,則100﹣x=66,

  即商店購進(jìn)34臺A型電腦和66臺B型電腦的銷售利潤最大.

  (3)據(jù)題意得,y=x+150,即y=(m﹣50)x+15000,

  33 ≤x≤70

  ①當(dāng)0

  ∴當(dāng)x=34時,y取最大值,

  即商店購進(jìn)34臺A型電腦和66臺B型電腦的銷售利潤最大.

 ?、趍=50時,m﹣50=0,y=15000,

  即商店購進(jìn)A型電腦數(shù)量滿足33 ≤x≤70的整數(shù)時,均獲得最大利潤;

 ?、郛?dāng)500,y隨x的增大而增大,

  ∴當(dāng)x=70時,y取得最大值.

  即商店購進(jìn)70臺A型電腦和30臺B型電腦的銷售利潤最大.

  23.閱讀理解:運(yùn)用“同一圖形的面積相等”可以證明一些含有線段的等式成立,這種解決問題的方法我們稱之為面積法.如圖1,在等腰△ABC中,AB=AC,AC邊上的高為h,點(diǎn)M為底邊BC上的任意一點(diǎn),點(diǎn)M到腰AB、AC的距離分別為h1、h2,連接AM,利用S△ABC=S△ABM+S△ACM,可以得出結(jié)論:h=h1+h2.

  類比探究:在圖1中,當(dāng)點(diǎn)M在BC的延長線上時,猜想h、h1、h2之間的數(shù)量關(guān)系并證明你的結(jié)論.

  拓展應(yīng)用:如圖2,在平面直角坐標(biāo)系中,有兩條直線l1:y= x+3,l2:y=﹣3x+3,

  若l2上一點(diǎn)M到l1的距離是1,試運(yùn)用“閱讀理解”和“類比探究”中獲得的結(jié)論,求出點(diǎn)M的坐標(biāo).

  【考點(diǎn)】一次函數(shù)綜合題.

  【分析】類比探究:結(jié)論:h=h1﹣h2.連接OA.利用三角形面積公式根據(jù)S△ABC=S△ABM﹣S△ACM,代入化簡即可解決問題.

  拓展應(yīng)用:首先證明AB=AC,分兩種情形利用(1)中結(jié)論,列出方程即可解決問題.

  【解答】解:類比探究:結(jié)論:h=h1﹣h2.

  理由:連接OA,

  ∵S△ABC= AC•BD= AC•h,

  S△ABM= AB•ME= AB•h1,

  S△ACM= AC•MF= AC•h2,.

  又∵S△ABC=S△ABM﹣S△ACM,

  ∴ AC•h= AB•h1﹣ AC•h2.

  ∵AB=AC,

  ∴h=h1﹣h2.

  拓展應(yīng)用:在y= x+3中,令x=0得y=3;令y=0得x=﹣4,

  則:A(﹣4,0),B(0,3),同理求得C(1,0),

  OA=4,OB=3,AC=5,

  AB= =5,

  所以AB=AC,

  即△ABC為等腰三角形.

  設(shè)點(diǎn)M的坐標(biāo)為(x,y),

 ?、佼?dāng)點(diǎn)M在BC邊上時,由h1+h2=h得:

  OB=1+y,y=3﹣1=2,把它代入y=﹣3x+3中求得:x= ,

  ∴M( ,2);

 ?、诋?dāng)點(diǎn)M在CB延長線上時,由h1﹣h2=h得:

  OB=y﹣1,y=3+1=4,把它代入y=﹣3x+3中求得:x=﹣ ,

  ∴M(﹣ ,4).

  綜上所述點(diǎn)M的坐標(biāo)為( ,2)或(﹣ ,4).

  24.如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個頂點(diǎn)A(﹣3,4)、B(﹣3,0)、C(﹣1,0).以D為頂點(diǎn)的拋物線y=ax2+bx+c過點(diǎn)B.動點(diǎn)P從點(diǎn)D出發(fā),沿DC邊向點(diǎn)C運(yùn)動,同時動點(diǎn)Q從點(diǎn)B出發(fā),沿BA邊向點(diǎn)A運(yùn)動,點(diǎn)P、Q運(yùn)動的速度均為每秒1個單位,運(yùn)動的時間為t秒.過點(diǎn)P作PE⊥CD交BD于點(diǎn)E,過點(diǎn)E作EF⊥AD于點(diǎn)F,交拋物線于點(diǎn)G.

  (1)求拋物線的解析式;

  (2)當(dāng)t為何值時,四邊形BDGQ的面積最大?最大值為多少?

  (3)動點(diǎn)P、Q運(yùn)動過程中,在矩形ABCD內(nèi)(包括其邊界)是否存在點(diǎn)H,使以B,Q,E,H為頂點(diǎn)的四邊形是菱形,若存在,請直接寫出此時菱形的周長;若不存在,請說明理由.www-2-1-cnjy-com

  【考點(diǎn)】二次函數(shù)綜合題.

  【分析】(1)先求得點(diǎn)D的坐標(biāo),設(shè)拋物線的解析式為y=a (x+1)2+4(a≠0),將點(diǎn)B的坐標(biāo)代入可求得a的值,故此可得到拋物線的解析式;

  (2)由題意知,DP=BQ=t,然后證明△DPE∽△DBC,可得到PE= t,然后可得到點(diǎn)E的橫坐標(biāo)(用含t的式子表示),接下來可求得點(diǎn)G的坐標(biāo),然后依據(jù)S四邊形BDGQ=S△BQG+S△BEG+S△DEG,列出四邊形的面積與t的函數(shù)關(guān)系式,然后依據(jù)利用配方法求解即可;

  (3)首先用含t的式子表示出DE的長,當(dāng)BE和BQ為菱形的鄰邊時,由BE=QB可列出關(guān)于t的方程,從而可求得t的值,然后可求得菱形的周長;當(dāng)BE為菱形的對角時,則BQ=QE,過點(diǎn)Q作QM⊥BE,則BM=EM.然后用含t的式子表示出BE的長,最后利用BE+ED=BD列方程求解即可.

  【解答】解:(1)由題意得,頂點(diǎn)D點(diǎn)的坐標(biāo)為(﹣1,4).

  設(shè)拋物線的解析式為y=a (x+1)2+4(a≠0),

  ∵拋物線經(jīng)過點(diǎn)B(﹣3,0),代入y=a (x+1)2+4

  可求得a=﹣1

  ∴拋物線的解析式為y=﹣(x+1)2+4,即y=﹣x2﹣2x+3.

  (2)由題意知,DP=BQ=t,

  ∵PE∥BC,

  ∴△DPE∽△DBC.

  ∴ = =2,

  ∴PE= DP= t.

  ∴點(diǎn)E的橫坐標(biāo)為﹣1﹣ t,AF=2﹣ t.

  將x=﹣1﹣ t代入y=﹣(x+1)2+4,得y=﹣ t2+4.

  ∴點(diǎn)G的縱坐標(biāo)為﹣ t2+4,

  ∴GE=﹣ t2+4﹣(4﹣t)=﹣ t2+t.

  如圖1所示:連接BG.

  S四邊形BDGQ=S△BQG+S△BEG+S△DEG,即S四邊形BDGQ= BQ•AF+ EG•(AF+DF)

  = t(2﹣ t)﹣ t2+t.

  =﹣ t2+2t=﹣ (t﹣2)2+2.

  ∴當(dāng)t=2時,四邊形BDGQ的面積最大,最大值為2.

  (3)存在.

  ∵CD=4,BC=2,

  ∴tan∠BDC= ,BD=2 .

  ∴cos∠BDC= .

  ∵BQ=DP=t,

  ∴DE= t.

  如圖2所示:當(dāng)BE和BQ為菱形的鄰邊時,BE=QB.

  ∵BE=BD﹣DE,

  ∴BQ=BD﹣DE,即t=2 ﹣ t,解得t=20﹣8 .

  ∴菱形BQEH的周長=80﹣32 .

  如圖3所示:當(dāng)BE為菱形的對角時,則BQ=QE,過點(diǎn)Q作QM⊥BE,則BM=EM.

  ∵M(jìn)B=cos∠QBM•BQ,

  ∴MB= t.

  ∴BE= t.

  ∵BE+DE=BD,

  ∴ t+ t=2 ,解得:t= .

  ∴菱形BQEH的周長為 .

  綜上所述,菱形BQEH的周長為 或80﹣32 .

猜你喜歡:

1.2017年數(shù)學(xué)中考模擬試題附答案

2.2017中考數(shù)學(xué)模擬試題附答案

3.2017數(shù)學(xué)中考模擬試題帶答案

4.2017中考數(shù)學(xué)模擬考試試卷及答案

5.2017初中數(shù)學(xué)中考模擬試卷

6.2017年中考數(shù)學(xué)模擬考試試題含答案

2017眉山中考數(shù)學(xué)模擬試題及答案(2)

②∵當(dāng)x﹣1時y隨x的增大而減小, 對稱軸直線x=﹣ ﹣1, 解得m﹣1,故本小題錯誤; ③∵將它的圖象向左平移3個單位后過原點(diǎn), 平移前的圖象經(jīng)過點(diǎn)(3,0),
推薦度:
點(diǎn)擊下載文檔文檔為doc格式

精選文章

  • 2017茂名中考數(shù)學(xué)模擬試卷及答案
    2017茂名中考數(shù)學(xué)模擬試卷及答案

    中考的數(shù)學(xué)要想取得提升就需要了解中考數(shù)學(xué)模擬試題,學(xué)生備考的時候掌握中考數(shù)學(xué)模擬試題自然能考得好。以下是學(xué)習(xí)啦小編為你整理的2017茂名中考數(shù)

  • 2017瀘州中考數(shù)學(xué)練習(xí)試卷
    2017瀘州中考數(shù)學(xué)練習(xí)試卷

    初三的學(xué)生要多做中考數(shù)學(xué)練習(xí)試題,并加以復(fù)習(xí),這樣能更快提升自己的成績。以下是學(xué)習(xí)啦小編為你整理的2017瀘州中考數(shù)學(xué)練習(xí)試題,希望能幫到你。

  • 2017瀘州中考數(shù)學(xué)模擬試題答案
    2017瀘州中考數(shù)學(xué)模擬試題答案

    學(xué)生想在中考取得提升備考的時候就要多做中考數(shù)學(xué)模擬真題,并加以復(fù)習(xí),這樣能更快提升自己的成績。以下是學(xué)習(xí)啦小編為你整理的2017瀘州中考數(shù)學(xué)模

  • 2017龍巖中考數(shù)學(xué)模擬試卷及答案
    2017龍巖中考數(shù)學(xué)模擬試卷及答案

    很多考生對中考數(shù)學(xué)不知道該如何復(fù)習(xí),掌握中考數(shù)學(xué)模擬試題多加練習(xí)會讓考生得到一定幫助,以下是小編精心整理的2017龍巖中考數(shù)學(xué)模擬試題及答案,

32845